
OpenSCADA 0.9 LTS
Savochenko R. O.
OpenSCADA Team <oscada@oscada.org>

The announce of the new LTS version 0.9 of the project
OpenSCADA — an open Supervisory Control and Data Acquisition
system. The new stable version is the result of six years of
development, implementation of various solutions, stabilization and
exploitation of OpenSCADA in its Work branch. But all this time,
updates for 0.8.0 LTS continued to be released and what would
happen for the announced 0.9 LTS.

1 Introduction
The release of OpenSCADA, an open SCADA (Supervisory Control and Data

Acquisition) system, version 0.9 is a stable industrial release of the long-term sup-
port (LTS).

The main purpose of the release is to provide an updated and stable platform
for building integrated automation systems and other adjacent solutions for the
community of users and developers of the free software. Also, the release is inten-
ded to become an actual and solid foundation for commercial solutions building.

The release is the next release of the stable branch for which, over a long period
of time, there provided the technical support from developers and releasing of up-
dates in the form of public builds for the main and stable environments of Linux, as
well as operational builds for holders of packages of the technical support. The life
cycle of the previous release 0.8.0 LTS stops from its latest update, right before the
first builds of 0.9 LTS packages.

It was at this version that the final transition to the Work/LTS development
scheme took place, that is, the development is carried out within the working ver-
sion and on its basis periodically released the stable releases, which, in turn and in
parallel, are updated by the back-porting compatible changes from the working
version. The initiating transition took place in 2013, when the current stable ver-
sion was recognized as 0.8.0 LTS and the working as 0.9 Work. Currently, 0.9 LTS
is announced as a stable version, and 1 Work as a working version.

In general, the new stable version is the result of six years of development, im-
plementation to various solutions, stabilization and exploitation of OpenSCADA in
its work branch, which is currently being released as a stable one. All this time up-
dates for 0.8.0 LTS continued to be released and what will be done for the an-
nounced 0.9 LTS.

1.1 Overall information

The OpenSCADA project was founded by Roman Savochenko in 2003 as a

free implementation of the SCADA system or the Human Machine Interface
(HMI), based on its thorough projecting during 2002 and the experience of using
and developing a commercial SCADA system to this.

SCADA or HMI systems are generally designed and used to carry out human
operational control over the work of complex and responsible technological equip-
ment and processes of various manufacturing enterprises.

At the time of announcement of 0.9 LTS, OpenSCADA is a developed
SCADA/HMI system, which is quite widely used as in the direct destination and,
due to its flexibility, in many related industries and it can definitely be called more
general — a dynamic system of working with data in the real time.

The number of the stable version of OpenSCADA is less than one only because
its purpose was claimed multiplatform, to achieve which in the planned volume is
scheduled for the next stable release number 1. In general, the objectives of
OpenSCADA are:

• openness — mostly GPLv2;

• scalability, flexibility, extensibility — modularity, multithreading and in-
ternal dynamism;

• executive redundancy — reservation;

• accessibility — opened source texts; multilingual; dynamic multilingual;
automatic build for archives, packages, live disks, ...; builds and executes
on wide age Linux environments, from 2002 (2009-ALTLinux
6, LP8x81, Fedora 12; 2012-Debian 7) to modern ones;

• reliability — practical application, quick problems solving;

• security — permissions distribution, SSL;

• multiplatform — x86_32, x86_64, ARM, Web, Android, QNX (preadap-
ted), MS Windows (scheduled);

• united, unified, user-friendly, dynamic and advanced user inter-
face — Qt, Web, transparent and multi-level remote dynamic control;

• wide range of the data sources — unified ones, DAQ boards and low-
level buses, created into the environment of OpenSCADA.

1.2 Application

For actual implementations, where at least one implementation is known and
with a short list of which from the project participants you can read through this
link, belong:

• ACS TP (SCADA/HMI) or telemechanics systems — the main direction
and there are many implementations;

• dynamic models, imitators and training apparatus of technological pro-

http://ftp.oscada.org/ALTLinux/6
http://ftp.oscada.org/ALTLinux/6
http://oscada.org/wiki/Special:MyLanguage/Using/Model_AGLKS
http://oscada.org/wiki/Special:MyLanguage/Using
http://oscada.org/wiki/Special:MyLanguage/Using
http://oscada.org/wiki/Special:MyLanguage/Using
http://oscada.org/en/development/tasks/posts/tasks_forming_formirovanie_zadach/adapting_openscada_to_work_on_os_ms_windows/
http://oscada.org/en/forum/posts/raznoe/popytka_adaptacii_openscada_k_qnx_65/
http://oscada.org/en/forum/posts/raznoe/popytka_adaptacii_openscada_k_qnx_65/
http://ftp.oscada.org/Debian/7
http://ftp.oscada.org/OpenSCADA/LTS/Fedora/12
http://oscada.org/wiki/Special:MyLanguage/Using/ICPDAS_LP8x81

cesses into the real-time;

• machine tools and industrial robots;

• agricultural dispatching and control systems, poultry-yards;

• embedded and mobile systems — environments of execution Program-
ming Logical Controllers (PLC), robots, ...;

• server equipment monitoring;

• smart houses and home automation.

With some restrictions and improvements, largely in the user's internal environ-
ment, OpenSCADA can be used in the following areas:

• enterprise resources management (ERP);

• Geo-location and location tracking;

• trading systems;

• medical diagnostic systems;

• accounting and bookkeeping;

• billing systems.

2 Results of the previous release 0.8.0 LTS
The release 0.8.0 LTS was released in April 2012 and during these six years it

received 20 updates, which, in total, corrected over 500 errors and added many im-
provements that do not violate the compatibility of library databases and configura-
tions.

The configuration and library databases of 0.8.0 LTS were generally frozen due
to large incompatible changes at 0.9 Work, for OpenSCADA launch methods, and
the imperfection of distributing the library databases at the release date of 0.8.0
LTS. Therefore, the upgrade and transition to 0.9 LTS will be non-trivial, although
0.9 LTS provides everything possible for simplification this procedure. Updating
0.9 LTS to the planned future 1 LTS will no longer be so complex and in fact can
only turn into a formal change in the version of the working branch, since now it is
planned to upgrade all, including the library databases.

3 Planned tasks of the release
The development of OpenSCADA, after the previous LTS version and within

the Work branch, was mainly through deep stabilization and through the practical
adaptation with elements of the expansion of the existing functional, aimed to
provide a stable and reliable environment for the industrial automation and related
tasks, and therefore, there was no clearly defined plan. But three years before this
release, such a plan appeared and made the following tasks, as seen from the gen-
eral development plan:

• Full revising the main documentation and preparing the release announce.

http://oscada.org/wiki/Special:MyLanguage/Works/Road_map
http://oscada.org/wiki/Special:MyLanguage/Works/Road_map
http://oscada.org/wiki/Special:MyLanguage/Documents/Release_0.9/Updating_0.8.0_LTS
http://oscada.org/wiki/Special:MyLanguage/Using/HouseSpirit
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Server
http://oscada.org/wiki/Special:MyLanguage/Using#Devices
http://oscada.org/wiki/Special:MyLanguage/Using/Yaroslavskij_broiler
http://oscada.org/wiki/Special:MyLanguage/Using/Vacuum_processing_unit

• Adaptation for work on the software platform "Android".

• OpenSCADA knowledge and documenting WIKI-resource moving to a
new engine with the structure unification for multi-languages into the pri-
ority: English, Ukrainian, Russian; and the off-line documentation genera-
tion at it changes.

• Main Web-modules revision, actualization and some expanding.

• OpenSCADA expanding and adapting for direct working with the low-
level buses and their devices like to 1Wire, I2C. Implementation for "the
Smart House" in my own apartments.

• Automation Linux distributive of the project OpenSCADA formal cre-
ation and documenting.

• Creating the Automatic building system of the OpenSCADA packages.

• Moving the OpenSCADA server infrastructure to its own equipment and
Internet channel.

• DAQ.OPC_UA: Simplification, features rising and protocol's code mov-
ing to a separate library on LGPL v3.

These tasks are done and some details about them are given below.

4 System-wide properties
The new stable version of OpenSCADA has gained significant system-wide ex-

tensions, increased stability in work and productivity, and also received significant
improvements to the graphical user interface and its environment, such as: ad-
vanced configuration, documentation, accessible directly from the program (offline
and online), and which significantly revised and updated.

The common part of documentation of the project has been moved to a new
Wiki, based on MediaWiki, and a significant amount of this part has been revised
and translated into three languages — English, Ukrainian, Russian. For the pages
transferring a converting procedure from the WackoWiki engine dialect to Medi-
aWiki was created which was completely written in the internal programming lan-
guage of OpenSCADA, and is used to transfer large volume of the old Wiki.
Format the offline documentation has been changed from static PDF-files, that
were not updated after the previous LTS version, to HTML-files which dynamic-
ally generated from the actual knowledge base (Wiki) of the project, and have ac-
tual cross-links between pages and links on the online-documentation, for exclus-
ively external materials. The offline-documentation is also generated by a spe-
cially-written procedure in the internal language of OpenSCADA, which, along
with the procedure of the Wiki-dialects converting and complex testing the release
OpenSCADA, is a bright sign of power and the current level of development of the
internal language of OpenSCADA.

Within the old Wiki, after the release 0.8.0 LTS, some documents were added

http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#releaseTests
http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#releaseTests
http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#docOffLine
http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#docOffLine
http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#wacko2media
http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#wacko2media
http://oscada.org/wiki/Special:MyLanguage/Modules/OPC_UA
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Server
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Server
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Automation_Linux_distributive
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Adaption_to_Android

and updated, and with the transferring to the new Wiki, in addition to revision and
translation of the main part of the documentation, the overall unification of its
structure was made for reasons of: multilingualism (English as a primary lan-
guage), the logic of the organization, the convenience of translation and the ability
to remove duplicate articles from the official site, which at the moment are simply
used with the Wiki. We will separately note the significantly expanded main docu-
ments:

• Quick start;

• Program manual;

• User API of OpenSCADA;

• FAQ and How to ...;

• Creating OpenSCADA module.

The original language (English) was completely revised in original messages of
the program and mainly for the main articles of the documentation-Wiki
OpenSCADA, which is currently making OpenSCADA an adequately favorable
for an audience that does not understand the original language — Ukrainian or
Russian. And, along with the full realization of the dynamic translation mechanism,
it is possible to build on the basis of OpenSCADA the dynamically multilingual
user interfaces that you can see, in particular, on the publicly available Web-inter-
face of the dynamic simulators of TP: AGLKS, Boiler.

The Work version, based on this stable, for the first time defined the
OpenSCADA projects conception and implemented a command line script for
launching and creating OpenSCADA projects. Immediately before the release of
this version, the concept of the OpenSCADA project was finally assigned to the
folder with the data of the separate project and the configuration file of
OpenSCADA, and the implementation of the project manager was integrated dir-
ectly into OpenSCADA. Consequently, this LTS version has a developed concept
for the project manager that allows to flexibly work with them and eliminate the
dangerous possibility of multiple launches with the general data of one project.

The Work version also introduced modification of the modules versions at
modification in the code of the module and just before they are uploaded to the
source repository, and therefore, the versions of the OpenSCADA modules of this
release clearly reflect the overall level of development and stability.

In the process of implementing works on the Work branch, based on this stable,
there were introduced the repositories of Linux distribution packages with the
OpenSCADA builds, which until now were only provided as separate packages.
That significantly simplified the deployment of OpenSCADA and keeping it up to
date. Then automatic builder of these packages was created, which currently has up
to 100 targets, and which greatly simplified the release of updates for both
branches, that is the Work and this stable. Therefore, this LTS version provides

http://oscada.org/en/development/tasks/posts/core/the_automatic_openscada_builder/
http://oscada.org:10003/
http://oscada.org:10002/
http://oscada.org/wiki/Special:MyLanguage/Documents/How_to/Create_module
http://oscada.org/wiki/Special:MyLanguage/Documents/How_to
http://oscada.org/wiki/Special:MyLanguage/Documents/FAQ
http://oscada.org/wiki/Special:MyLanguage/Documents/User_API
http://oscada.org/wiki/Special:MyLanguage/Documents/Program_manual
http://oscada.org/wiki/Special:MyLanguage/Documents/Quick_start

packages collections for the main Linux environments and the entire history of
public updates will be saved.

To the OpenSCADA packages collections there also provide builds of the live
disks of the quick acquaintance and deployment of OpenSCADA together with the
system environment. Currently, they have received a formal background in the
form of the Linux Automation Distribution of OpenSCADA.

OpenSCADA builds and packages are accompanied by a number of open and
free materials of the internal environment of the program, that is, the development
of the data acquisition and processing layer, graphic representation elements and
whole-complex projects of the TP simulators. These materials are provided as
SQLite database files and include:

• Functions libraries (OscadaLibs), "LibsDB/OscadaLibs.db" — contains
all the development of the OpenSCADA project in the data acquisition
and processing layer, including data source elements of the user protocol.

• VCA: Main libraries (vcaBase), "LibsDB/vcaBase.db" — contains main
elements of the graphic representation and elements of the mnemonic
schemes of the OpenSCADA project.

• VCA: Tests (vcaTest), "LibsDB/vcaTest.db" — contains test elements of
the graphic representation primitives.

• VCA: Library of electrical-elements of the mnemonic schemes of the user
interface (vcaElectroEls), "LibsDB/vcaElectroEls.db" — contains ele-
ments of the graphical representation of the electrical schemes.

Hosting of the project in general and materials of 0.9 LTS in particular were
transferred to own project server, where additionally were deployed: the demon-
stration Web-interfaces of OpenSCADA simulators, the project of server monitor-
ing and smart home based on OpenSCADA and builder of the packages of the
OpenSCADA repositories.

4.1 Internal

The resolution of internal data of the integer type of the OpenSCADA environ-
ment is increased to 64 bits. In general, the internal data of OpenSCADA, with er-
ror value reservation (EVAL) for each, is unified by common types: logical, in-
teger, real, string, and object. Which primarily concerns the data sources.

To the OpenSCADA core, its own protocol and all nodes that work with remote
stations OpenSCADA; added the ability to "raise" the nodes of OpenSCADA that
are located behind other nodes and, as a rule, in another network. What generally
allows you to centrally manage the OpenSCADA network at any level of the hier-
archy.

http://oscada.org/wiki/Special:MyLanguage/Modules/UserProtocol
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Server
http://oscada.org/wiki/Special:MyLanguage/Libs/Mnemo_elements
http://oscada.org/wiki/Special:MyLanguage/Libs/Mnemo_elements
http://oscada.org/wiki/Special:MyLanguage/Libs/Main_elements
http://oscada.org/wiki/Special:MyLanguage/Libs/Main_elements
http://oscada.org/wiki/Special:MyLanguage/Libs/User_protocol_devices
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Automation_Linux_distributive
http://oscada.org/wiki/Special:MyLanguage/Documents/How_to/Live_disk
http://oscada.org/wiki/Special:MyLanguage/Documents/How_to/Live_disk

4.2 Improvements and adaptions to the different platforms

This version of OpenSCADA has gained in-depth support and ability to adapt
to different platforms. This was mainly due to the adaptation to work on the An-
droid software platform and the restoration of the building and work with ucLibC,
and that it is planned to be used for further adaptation to work on QNX and MS
Windows software platforms.

Working on the Single-board PCs was expanded by the Raspberry Pi and Or-
ange Pi boards.

Support of the Linux smartphones of Nokia was appended by the last one based
on MeeGo 1.2, that is Nokia N9. Or it was the renewing of support for the Nokia
N950.

In addition to direct work (natively) on different platforms, the Web-interface
has been significantly expanded, which currently implements all the general fea-
tures of the concept of the Visualization Control Area (VCA).

4.3 Optimization, stabilization and performance

Significant stabilization of the OpenSCADA core, and the overall program, has
been achieved through the unification of internal resources control and the expan-
sion of capabilities of the user debugging. In general, the user diagnostic and de-
bugging expanded:

• general enabling-disabling of the debugging and target control of the de-
bugging nodes;

• special debugging of the controller objects of the data sources;

• special debugging of execution of the VCA projects;

• in-depth statistics formation for execution of the dynamic objects
OpenSCADA, such as: controller objects of the data sources and their
parameters, incoming and outgoing traffic, VCA sessions with detail up to
widgets;

• logging of ingoing and outgoing traffic of the transports.

Almost all of the OpenSCADA modules have been subjected to deep and com-
prehensive stabilization and many have been optimized, of which especially should
be noted:

• All DB modules — added processing and verification of database or
DBMS errors, and issuance of messages about these errors in the case of
user uploading and recording; increased productivity (up to ten times)
DBs that support SQL, through the implementation of the pre-loading
mode of the scan query;

• Calculator on the Java-like language (DAQ.JavaLikeCalc) — increased

http://oscada.org/wiki/Special:MyLanguage/Modules/JavaLikeCalc
http://oscada.org/wiki/Special:MyLanguage/Modules#DB
http://oscada.org/wiki/Special:MyLanguage/Documents/Program_manual#Transports
http://oscada.org/wiki/Special:MyLanguage/Documents/How_to/Debug
http://oscada.org/wiki/Special:MyLanguage/Using/Orange_Pi
http://oscada.org/wiki/Special:MyLanguage/Using/Orange_Pi
http://oscada.org/wiki/Special:MyLanguage/Using/Raspberry_Pi

productivity by: saving the context of the function execution, constants
pre-loading and direct access to string.

• Archiver to DB (Archive.DBArch) — significantly optimized for record-
ing and reading of the database, that is: group recording of multiple
archives to one table and block reading (multiples of ten) in one query.

• All transports — increased for the overall productivity.

• Operation user interface (WEB) (UI.WebVision) — sensitivity of the in-
terface increased by using asynchronous queries in the overall updating
cycle.

Reliability of the redundant station on an integrated solution scale, more pre-
cisely the preservation of the history data, was enhanced by the extension of the re-
dundancy mechanism, which potentially involves reserving any subsystem and cur-
rently implements the subsystems "Data acquisition" and "Archives-History".

And, for the program as a whole, a series of formal comprehensive tests was
executed, that was pre-expanded in the internal integrated testing procedure of the
OpenSCADA release. On the basis of these tests, several bugs were detected which
were fixed.

4.4 Data acquisition

Given the key role of the data acquisition in this type of software, this feature,
in the person of the subsystem "Data acquisition" and its modules, has received
significant improvements, of which particular attention should be paid: shifting
emphasis on the extending supported data sources from implementation of indi-
vidual modules of the subsystem "Data acquisition" in the system language "C/C+
+", to their implementation in the OpenSCADA environment and in its internal lan-
guage — logical level of OpenSCADA. That is, at the logical level of
OpenSCADA, can be and implements everything that: uses the network to access
the data, does not require to use specific libraries and functions, and is not very
complicated. Currently there implemented in this way:

• Sending SMS (SMS) and Email (SMTP).

• Uninterruptible Power Supply (UPS), as a data object with attributes of
values.

• Simple sensors:

◦ Елемер TM510x;

◦ EDWARDS TURBOMOLECULAR PUMPS (SCU750);

◦ Sycon Multi Drop Protocol (SMDP);

◦ Power supply of the turbo-molecular pump (TMP-xx03);

◦ Temperature measurement IT-3 (IT3);

http://oscada.org/wiki/Special:MyLanguage/Documents/DAQ
http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#releaseTests
http://oscada.org/wiki/Special:MyLanguage/Libs/Service_procedures#releaseTests
http://oscada.org/wiki/Documents/Release_0.9/Tests
http://oscada.org/wiki/Special:MyLanguage/Modules/WebVision
http://oscada.org/wiki/Special:MyLanguage/Modules#Transports
http://oscada.org/wiki/Special:MyLanguage/Modules/DBArch

◦ IVE-452HS-02;

◦ OPTRIS CT/CTL;

◦ CTR 100, 101.

• Computer of the heat-counter VKT7.

• IEC-60870-104.

• Test implementations and examples: DCON, OWEN.

• Bus "One Wire" in help of {DS9097,DS9097U}
(1W_{DS9097,DS9097}) for chips: DS1820, DS1820/DS18S20/DS1920,
DS1822, DS2413, DS2408, DS2450, DS2438.

• Bus I2C: PCF8591, PCF8574, BMP180, DS3231, AT24C{32|64}.

• Generic ports IO (GPIO): DHT11,22 (AM23XX). GPIO|I2C:
1602A(HD44780).

Given the increased role of the logical level of OpenSCADA, there has been an
increase in the requirements to the flexibility of the data model of the data source,
which was satisfied by:

• completion of the coverage of the internal data model by all the functions
that are specific to the areas of application;

• adding hierarchy to the parameters of controller objects of the data
sources;

• giving the possibility of an arbitrary and dynamic formation of the data
model — a set of attributes of parameters.

The OpenSCADA internal programming language has made significant im-
provements and, at the moment, satisfies all the requirements of the areas of ap-
plication OpenSCADA. Many of these enhancements came in the previous version
of 0.8.0 LTS, and some could not get there because of the backward compatibility
or lack of stability at that time. Of these significant improvements, it should be
noted again: increasing the resolution of the data of the OpenSCADA internal en-
vironment of the integer type up to 64 bits and preserving the context of execution
of the internal procedures.

4.5 Graphical environment

In general, the graphical environment has been significantly developed, and the
main one has been the extension of the module of starting the Qt-interface, as the
basis for the rest local interface modules. First of all, this module and the core of
OpenSCADA are adapted to allow the Qt-library to run in the main thread of the
program, eliminating many of the problems associated with execution in the non-
main thread, and also provides work with version 5 of this library. Secondly, this
module took on the role of the selecting interface of the OpenSCADA projects

http://oscada.org/wiki/Special:MyLanguage/Modules/QTStarter

when it launches and switches, as well as creating new ones. And thirdly, because
of its primacy to launching Qt, it received the function of controlling the appear-
ance of the program regardless of the graphical environment and the possibility of
its launch-closing in the system tray. In general, it has made of the possibility to
customize OpenSCADA to personal user requirements and to adapt it to very spe-
cific environments such as Android.

Notable improvements have been made to the Qt and Web configuration mod-
ules, which are particularly noteworthy:

• Configurator-Qt (UI.QTCfg): querying remote stations in a separate
thread from the Qt-thread made it more convenient and more predictable
and even, along with one update, got into the previous stable versions of
0.8.0 LTS.

• Configurator-WEB (UI.WebCfgD): in general, has been completely up-
dated to the interface, which is now more dynamic, user-friendly and can
be extended by themes.

Notable improvements were also made to the Visual Control Area (VCA), con-
sisting of all its modules:

• VCA Engine and the visualizer modules at all (UI.VCAEngine):

◦ allows to carry out a full-hot development, that is — editing the VCA
project at the time of its execution by sessions;

◦ the original interface messages are fully corrected, grammatically and
spelling correct for the English language;

◦ provided a number of additional types of the primitive "Form ele-
ments", "Diagram" and extended the primitive "HTML" by "HTML"
displaying;

◦ the mechanism of the widget specific attributes to the visualizer was
provided, which allowed to reveal and use their individual properties;

◦ new-flexible mechanism of user notification about extraordinary
events in the process controlled by the system, which provides the
possibility of free formation of custom announcers with the necessary
properties, such as: mono-tone signal, synthesis of speech.

• Visualizer-Qt (UI.Vision):

◦ noticeably improved performance of execution the remote interfaces
and it is ensured for queries to the remote station in a separate thread
from the Qt one, which facilitated remote development with parallel
execution of the project;

◦ forming the primitive "Document" can be performed at help WebKit.

• Visualizer-WEB (UI.WebVision):

http://oscada.org/wiki/Special:MyLanguage/Modules/WebVision
http://oscada.org/wiki/Special:MyLanguage/Modules/Vision
http://oscada.org/wiki/Special:MyLanguage/Modules/VCAEngine
http://oscada.org/wiki/Special:MyLanguage/Modules/WebCfgD
http://oscada.org/wiki/Special:MyLanguage/Modules/QTCfg
http://oscada.org/wiki/Special:MyLanguage/Sub-projects/Automation_Linux_distributive

◦ unified, optimized and expanded by using CSS3;

◦ provides the implementation for all elements-primitives of the unified
interface;

◦ performs the scaling to allowed space of the browser window;

◦ increased for the working productivity and the interface sensibility,
through using only the asynchronous mechanism at updating.

All Web modules, in general, have the opportunity to change the view by top-
ics, through the system-wide interfaces of the protocol HTTP and its mechanisms
for query processing and response forming. Also, they all have the support of dy-
namic translation of the interface, which is especially relevant for multi-user Web-
interfaces, and what you can see on the demo Web-interfaces of the OpenSCADA
models: AGLKS, Boiler. There is also a mechanism for the distribution of access
to the pages, which, in particular, allows to differentiate access to the Web-modules
in general.

5 New and significantly updated modules
The new version has added new modules and significantly updated a number of

present ones:

• New modules added:

◦ MMS(IEC-9506) (DAQ.MMS) — a module of supporting for data
exchanging at the protocol "Manufacturing Message Specification
(MMS, IEC-9506)".

◦ Comedi (DAQ.Comedi) — a module of supporting the data sources
of the real time (library "Comedi"), which are based on the data ac-
quisition boards of different manufacturers and are installed on the
buses: ISA, PCI, PCMCIA and USB.

◦ SMH2Gi (DAQ.SMH2Gi) — a module of implementation of access
to hardware modules of the data sources of PLC Segnetics
SMH2Gi,SMH4 for "MC", "MR", and also for interaction with the
original environment "SMLogix".

◦ Fastwel IO (DAQ.Fastwel) — a module of data exchanging with the
hardware modules of Fastwel IO.

◦ FT3 (АПСТМ) (DAQ.FT3) — a module of data exchanging with the
PLC АПСТМ, АСДКУ, СУАП.

◦ GPIO (DAQ.GPIO) — a module of accessing to GPIO of the single-
board PC like to Raspberry Pi, Orange Pi and other.

• Calculator on the Java-like language (DAQ.JavaLikeCalc) expanded for:
support for internal functions, dynamic translation of messages and many
other functions of the user programming interface in general.

http://oscada.org/wiki/Special:MyLanguage/Modules/JavaLikeCalc
http://oscada.org/wiki/Special:MyLanguage/Modules/GPIO
http://oscada.org/wiki/Special:MyLanguage/Modules/FT3
http://oscada.org/wiki/Special:MyLanguage/Modules/Fastwel
http://oscada.org/wiki/Special:MyLanguage/Modules/SMH2Gi
http://oscada.org/wiki/Special:MyLanguage/Modules/Comedi
http://oscada.org/wiki/Special:MyLanguage/Modules/MMS
http://oscada.org:10003/
http://oscada.org:10002/
http://oscada.org/wiki/Special:MyLanguage/Modules/HTTP

• Data sources gate (DAQ.DAQGate) expanded by reflecting the messages
associated with the selected data source.

• Data acquisition of OS (DAQ.System) expanded for the data sources:
"File System", UPS, QSensor and the ability to separate slow sources
from fast ones.

• ModBus ({DAQ,Protocol}.ModBus) expanded for support string, as a se-
quence of values of the registers.

• Client DCON (DAQ.DCON) significantly expanded for specific modules
support.

• OPC-UA (DAQ.OPC_UA) significantly expanded for Publishes and to
support for "Chunks" into client part of the service, the specific protocol
code is separated from the library.

• Equipment of ICP_DAS (DAQ.ICP_DAS) significantly expanded, and in
fact completely rewritten, for support all available ICP_DAS data acquisi-
tion boards for the series I8k, I-87k, on the ISA bus and unified types for
standard modules of the I7k series.

• Siemens S7 PLC (DAQ.Siemens) significantly expanded its own imple-
mentation of ISO-TSAP.

• Diamond data acquisition boards (DAQ.DiamondBoards) significantly
expanded, but in fact completely rewritten, to support all existing data ac-
quisition boards from Diamond Systems.

• AMR devices АСКО (DAQ.AMRDevs) appended of support the counter
Kontar (MZTA).

• All DB modules significantly expanded by the dynamic translation.

• Archiver to DB (Archive.DBArch) expanded by archiving several
archives into one table and restoring the list of archives from information
in the database.

• Archiver to FS (Archive.FSArch) added for supported the intermediate
types "Int16", "Int32", "Int64", "Float", "Double", and appended by an ab-
solute limit to the size of the archive on the disk.

• All transport modules extended for the pooling mode of the input trans-
ports and protocols.

• Sockets (DAQ.Sockets) expanded by the RAWCAN bus support and initi-
ated connections of the input transports.

• Serial interfaces (Transport.Serial) expanded for the low-level bus I2C
support; special user functions of the serial interface: "sendbreak", "TS",
"DR", "DCD", "RI"; advanced control RTS for RS-485.

http://oscada.org/wiki/Special:MyLanguage/Modules/Serial
http://oscada.org/wiki/Special:MyLanguage/Modules/Sockets
http://oscada.org/wiki/Special:MyLanguage/Modules#Transports
http://oscada.org/wiki/Special:MyLanguage/Modules/FSArch
http://oscada.org/wiki/Special:MyLanguage/Modules/DBArch
http://oscada.org/wiki/Special:MyLanguage/Modules#DB
http://oscada.org/wiki/Special:MyLanguage/Modules/AMRDevs
http://oscada.org/wiki/Special:MyLanguage/Modules/DiamondBoards
http://oscada.org/wiki/Special:MyLanguage/Modules/Siemens
http://oscada.org/wiki/Special:MyLanguage/Modules/ICP_DAS
http://oscada.org/wiki/Special:MyLanguage/Modules/OPC_UA
http://oscada.org/wiki/Special:MyLanguage/Modules/DCON
http://oscada.org/wiki/Special:MyLanguage/Modules/ModBus
http://oscada.org/wiki/Special:MyLanguage/Modules/System
http://oscada.org/wiki/Special:MyLanguage/Modules/DAQGate

• Security Sockets Layer (Transport.SSL) expanded by support: TLSv1.1,
TLSv1.2, DTLSv1.

• Own protocol of the program (Protocol.SelfSystem) expanded for hier-
archical and multi-level targeting of requests to external hosts.

• HTTP (Protocol.HTTP) expanded for adapting to the user interfaces in the
system dialogs and providing a generic API for building HTTP interfaces
for both the user and the modules behind it.

• Program configurator (Qt) (UI.QTCfg) OpenSCADA control interface re-
quests are moved to a different thread and improved for implementation
of the control elements.

• Program configurator (Dynamic WEB) (UI.WebCfgD) expanded with a
new design using CSS3 and the features of modern WEB browsers.

• Conception and the Visual Control Area (VCA) (UI.VCAEngine) expan-
ded by: support for specific visualizer attributes of the widgets, imple-
mentation of the new-flexible mechanism of the user's notification, back-
ground (in a separate thread) execution of the document forming task, in-
crease of the number of trends in one frame to 100 and support of the log-
arithmic scale for the primitive "Diagram".

• Operation user interface (Qt) (UI.Vision) expanded: to work on the net-
work through the visualizer server; implementing a group of attributes
specific to this visualizer; realization of the views "Tree", "Table" and ex-
tension of the type "Button", of the primitive "Form elements"; imple-
mentation of the view "XY" of the primitive "Diagram"; significant re-
factoring code of the primitive "Elementary figure".

• Operation user interface (WEB) (UI.WebVision) expanded for using
CSS3 and the capabilities of modern browsers, in particular: added zoom
to the available window browser space, implemented all the primitives of
the unified interface.

• Functions library of the system API of the user programming environ-
ment (Special.FLibSYS) expanded by the functions and objects: "floatEx-
tract", "md5", "tmSleep", the object "IO"; significantly expanded for the
actual functions and objects: "dbReqSQL", "FFT", "strParse", "str-
Dec4Bin".

6 Conclusion
On the way to the new release 0.9 LTS of industrial use, much work has been

done to stabilize, expand functionality, and expand adaptability to work on altern-
ative platforms. All this in general has further expanded the scope of full use of
OpenSCADA at all levels of industrial automation systems and related areas of
automation and automatic.

http://oscada.org/wiki/Special:MyLanguage/Modules/FLibSYS
http://oscada.org/wiki/Special:MyLanguage/Modules/WebVision
http://oscada.org/wiki/Special:MyLanguage/Modules/Vision
http://oscada.org/wiki/Special:MyLanguage/Modules/VCAEngine
http://oscada.org/wiki/Special:MyLanguage/Modules/WebCfgD
http://oscada.org/wiki/Special:MyLanguage/Modules/QTCfg
http://oscada.org/wiki/Special:MyLanguage/Modules/HTTP
http://oscada.org/wiki/Special:MyLanguage/Modules/SelfSystem
http://oscada.org/wiki/Special:MyLanguage/Modules/SSL

LTS versions of OpenSCADA are not blank, they are really supported all the
time until the next LTS version, and support for this version will be further expan-
ded with the service updates. Also, the emphasis and implementation policy of the
LTS version, which was previously recommended to upgrade configurations with
frozen library databases, will be shifted to the using priority on a wide range of
new solutions.

In the emergence of the new industrial version of OpenSCADA 0.9 LTS took
part:

• Roman Savochenko: the main volume of work on the development, test-
ing, building, documenting and translation of the program and documenta-
tion in three languages.

• Maxim Kochetkov: implementing the modules DAQ.Fastwel, DAQ.FT3;
expanding the module Transport.Sockets by support RAWCAN and the
module Transport.Serial by extended control RTS for RS-485.

• Arsen Zakojan: implementing for support the electricity counters "Mer-
cury 200" and "Mercury 230".

• Ruslan Yarmoliuk: implementing for support the electricity counter NIK
2303.

• Almaz Karimov: expanding for the module of the protocol DCON imple-
mentation.

• Arcadiy Kisel: implementing for support the I2C temperature, barometric
pressure and humidity sensor BME280.

• Constantine (IrmIngeneer): support of the OpenSCADA build on the
Linux distribution Gentoo.

• Sergij Doroshka: previous adaptation of OpenSCADA to work on QNX.

• The organizations which caused to the most significant OpenSCADA im-
provement through it integration to own control systems:

◦ Proviron Holding NV: purchasing the technical support packages for
the general support, fixing and improvement the Siemens ISO-
TSAP(ProfiNet) protocol implementation, some workouts with Rasp-
berry Pi, 2014, 2016-2018.

◦ Laboratory of the vacuum technologies: "Vacuum technological facil-
ity", 2011-2018, and financing equipment for the OpenSCADA
server, 2014

◦ Optima: "Automation System of the Metropolitan", 2015-2016.

◦ Vector: purchasing the technical support packages for fixing and im-
provement the OPC-UA implementation to work with different OPC-
UA clients and servers, 2015-2016.

http://oscada.org/en/forum/posts/raznoe/popytka_adaptacii_openscada_k_qnx_65/
http://oscada.org/wiki/Special:MyLanguage/Modules/Serial
http://oscada.org/wiki/Special:MyLanguage/Modules/Sockets
http://oscada.org/wiki/User:RomanSavochenko

◦ Kramatorskteploenergo+DIYA: "ACS of the ball drum mills BDM
287/410 of the boiler #8 of BKZ 160–100 PT", 2015, and "ACS of
Phosphating, Amination and Hydrazine of boiler BKZ 160–100 PT",
2014. For PLC there used ICP-DAS LP-8781 with OpenSCADA in a
role of environment of execution of PLC.

◦ Hartron: "Reactivity Monitoring System (RMS) of the Subcritical
Nuclear Facility (SNF)", 2013-2015.

• Many other organizations and individual users who wished to remain an-
onymous, through the purchase of technical support and services, con-
structive feedback on implementation and exploiting.

Further development efforts will focus on:

• Completion of revisions of the basic documentation, mainly for modules
and libraries.

• Clear definition and update of the policy of providing commercial ser-
vices around the OpenSCADA project:

◦ view and update the terms of package of the technical support;

◦ policy and organization of building updates to the stable branch: pre-
serving the history of all public updates and organizing service ones;

◦ distribution of exclusively commercial builds with public demonstra-
tion on an example package for Android — development and forma-
tion of a mechanism for monitoring the term of the package of tech-
nical support and demonstration mode.

• Mastering and adapting to Enterprise Resource Planning (ERP), focusing
on:

◦ create a resource management interface on the project server;

◦ creating a common interface for tasks control and their funding, with
the organization of developers to engage in the implementation of
these tasks and technical support.

• Expand the application functions in the areas: "Smart House", "Home
Automation" and "Custom Robots".

• Adaptation to work in the environment of the operating systems QNX and
MS Windows.

	1 Introduction
	1.1 Overall information
	1.2 Application

	2 Results of the previous release 0.8.0 LTS
	3 Planned tasks of the release
	4 System-wide properties
	4.1 Internal
	4.2 Improvements and adaptions to the different platforms
	4.3 Optimization, stabilization and performance
	4.4 Data acquisition
	4.5 Graphical environment

	5 New and significantly updated modules
	6 Conclusion

