The module <VCAEngine> of subsystems
"User Interfaces"

Module: VCAEngine

Name: Visual control area engine

Type: User Interfaces

Source: ui_VCAEngine.so

Version: 1.2.0

Author: Roman Savochenko

Translated: |Maxim Lysenko

Description: | The main visual control area engine.
License: GPL

Contents table

The module <VCAENgine> of subsystems "User Interfaces" ..o,
] (Yo [Ulei1To) o VTP
T PUIPOSE. ...ttt e et e e e e e e e e e e et e e e e e e e e e e e et e e e eaaeeaaaaas
2. The configuration and the formation of interfaces of the VCA.........cooveiieeieiiiiiieiinnn.
I N o] AT 1(=T 03 (U (= TR
3.1. Frames and elements of visualization (Widgets)...........cccuueiviiiieiiiiiiiiieeeeeeeeeeee, 6
I d () (=Y o1 SR PP UURPPRPRPPIN 9
R TS 1 1 [P USUUUURRRRR 12
3.4. Events, their processing and the events' MapsS........couveeeeeeee e, 14
3.5. SINAING (ALGIMNS). oot e e e e e e e e 17
3.6. RIightS MAaANAQEMENL........conieeeeeee e et e e e e e e enaens 18
3.7. Linkage with the dYNAMICS.........coouniieiieeeeeeeee e 18
3.8. The primitives of the WIAQEL oo 24
3.8.1. Elementary graphic figures (EIFIQUIe).............uueiiiiiiiiiiiiiiiceeeeeeeeee e, 27
3.8.2. Element of the form (FOrMEND......ccoom oo 29
3.8.3. TeXt €lEMENT (TEXE) .. e eeeeeee et e e e e 32
3.8.4. Element of visualization of media materials (Media)...........c.cccvvuveeevvnnnnnnnnn. 33
3.8.5. Element of constructing diagrams/trends (Diagram)..............cccccceeeeeeeennnnen. 34
3.8.6. The element of building the protocols based on the archives of messages
[0 (o TeTo)) 36
3.8.7. Element of formation of documentation(Document)...........ccecevvvveenieenennnnnn. 37
R T OFe) 01 7= 1101= M (=100 .4 FTTUUTRTRR PR 40
3.9. Using the database to store the library of widgets and projects......................... 41
3.10 APl of the user programming and service interfaces of the OpenSCADA........ 43
3.10.1. APl of the USEer ProgramMiNg......ccuueee e 43
3.10.2. Service interfaces of the OPENSCADAoo e, 45

4. Configuring the module via the control interface of OpenSCADA........c.ccceveeen..... 48

Introduction

VCAEngine module provides visual control area engine (VCA) in OpenSCADA system. Module itself
does not implement the visualization of the VCA, and contains data in accordance with the ideology of
«model/data — Interface». Data visualization of that module is implemented by the visualization modules
of VCA, such as Vision and WebVision.

Visual control area (VCA) is an integral part of the SCADA system. It applies to the client stations with
a view to providing accessible information about the object and to for the the issuance of the control
actions to the object. In various practical situations and conditions the VCA, based on different principles
of visualization may by applied. For example, this may be the library of widgets QT, GTK+, WxWidgets
or hypertext mechanisms based technologies HTML, XHTML, XML, CSS, and JavaScript, or third-party
applications of visualization, realized in various programming languages Java, Python, etc. Any of these
principles has its advantages and disadvantages, the combination of which could become an
insurmountable obstacle to the use of VCA in a practical case. For example, technologies like the QT
library can create highly-reactive VCA, which will undoubtedly important for the operator station for
control of technological processes (TP). However, the need for installation of that client software in some
cases may make using of it impossible. On the other hand, Web-technology does not require installation
on client systems and is extremely multi-platform (it is enough to create a link to the Web-server at any
Web-browser) that is most important for various engineering and administrative stations, but the
responsiveness and reliability of such interfaces is lower that actually eliminates the using of them at the
operator of the TP stations.

OpenSCADA system has extremely flexible architecture that allows you to create external interfaces,
including user and in any manner and for any taste. For example, the system configuration OpenSCADA
as now available as by means of the QT library, and also the Web-based.

At the same time creation of an independent implementation of the VCA in different basis may cause
the inability to use the configuration of one VCA into another one. That is inconvenient and limited from
the user side, as well as costly in terms of implementation and follow-up support. In order to avoid these
problems, as well as to create as soon as possible the full spectrum of different types of VCA project of the
creation of the conception of the VCA is established. The result of this project — the engine module(data
model) of the VCA, as well as direct visualization modules Vision and WebVision.

1. Purpose

This module of the engine (data model) of the VCA 1is aimed to create the logical structure of the VCA
and the execution of sessions of individual instances of the VCA projects. Also, the module provides all
the necessary data to the final visualizers of the VCA, both through local mechanisms of interaction of
OpenSCADA, and through the management Interface of OpenSCADA for remote access.

The final version of the VCA module, built on the basis of this module, will provide:
three levels of complexity in the formation of visualization interface which let organically to
develop and apply the tools of the methodology from simple to complex:
formation from the template frames through the appointment of the dynamics (without
the graphical configuration);
graphical formation of new frames through the use of already made visualization
elements from the library (mimic panel);
formation of new frames, template frames of the visualization elements in the libraries.
building of the visualization interfaces of various complexity, ranging from simple flat
interfaces of the monitoring and finishing with the full-fledged hierarchical interface used in
SCADA systems;
providing of the different ways of formation and configuration of the user interface, based on
different graphical interfaces (QT, Web, Java ...) and also through the standard management
interface of OpenSCADA system;
change of dynamics in the process of execution;

OpenSCADA - UL.VCAENngine 2

http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=h86
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=n04
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=th4
http://wiki.oscada.org/Doc/KoncepcijaSredyVizualizacii?v=th4
http://wiki.oscada.org/HomePageEn/Doc/WebVision?v=h86
http://wiki.oscada.org/HomePageEn/Doc/Vision?v=n04

- building of the new template frames on the user level and the formation of the frames libraries,
specialized for the area of application (eg the inclusion of frames of parameters, graphs and other
items linking them to each other) in accordance with the theory of secondary using and
accumulation;

« building of the new user elements of the visualization and the formation of the libraries of
frames,specialized for the area of application in accordance with the theory of secondary using and
accumulation;

« description of the logic of new template frames and user visualization elements as with the
simple links, and also with the laconic, a full-fledged programming language;

- the possibility of the inclusion of the functions(or frames of computing of the functions) of the
object model of OpenSCADA to the user elements of the visualization, actually linking the
presentation of the algorithm of computing (for example, by visualizing the library of models of
devices of TP for following visual modeling TP);

- separation of user interfaces and interfaces of visualization of data provides building the user
interface in a single environment, and performance of it in many others (QT, Web, Java ...);

the possibility to connect to the performing interface for monitoring and corrective actions (for
example, while operator training and control in real time for his actions);

Visual building of various schemes with the superposition of the logical links and the
subsequent centralized execution in the background (visual construction and performance of
mathematical models, logic circuits, relay circuits and other proceedings);

- providing of the the functions of the object API to the OpenSCADA system, it can be used to
control the properties of the visualization interface from the user procedures;

building of the servers of frames, of elements of the visualization and of the project of the
interfaces of the visualization with the possibility to serve the great number of the client
connections;

- simple organization of client stations in different basis (QT, Web, Java ...) with the connection
to the central server;

full mechanism of separation of privileges between the users which allows to create and execute
projects with the various rights of access to its components;

adaptive formation of alarms and notifications, with the support of different ways of
notification;

- support of the user formation of the palettes and font preferences for the visualization of the
interface;

- support of the user formation of maps of the events under the various items of equipment
management and user preferences;

- support for user profiles, allowing to define various properties of the visualization interface
(colors, font characteristics, the preferred maps of events);

- flexible storage and distribution of libraries of widgets, frames, and projects of the visualization
interfaces in the databases, supported by OpenSCADA; actually users need only to register the
database with data.

OpenSCADA - UL.VCAENngine 3

2. The configuration and the formation of interfaces of the VCA

Module itself does not contain a visual tool for creating interfaces of VCA, based on one of the one of
the mechanisms. Such tools can be given by the final visualization modules of the VCA, for example the
module Vision of such a tool is provided.

Although the visual tool for the formation of the VCA the module doesn't provide the interface,
implemented on the basis of the management interface of the OpenSCADA, to manage the logical
structure is provided, and thus it is available for use in any system configurator of the OpenSCADA.
Dialogues of this interface are considered further in the context of the architecture of the module and its
data.

OpenSCADA - UL.VCAENngine 4

http://wiki.oscada.org/HomePageEn/Doc/Vision?v=n04

3. Architecture

Any VCA can operate in two modes — the development and execution. In the development mode the
VCA interface and its components are formed, the mechanisms of interaction are identified. While the
execution it is carried out the formation of VCA interface and epy interaction, based on the developed
VCA, with the final user is made.

VCA interface is formed of the frames, each of which, in its turn, formed from elements of the
primitives, or user interface elements. In doing so, the user interface elements are also formed from the
primitives or other user elements. That gives us a hierarchy and reuse of already developed components.

Frames and user elements are placed in the libraries of widgets. The projects of the interfaces of the
final visualization of the VCA are formed from these libraries' elements. Based on these projects the
visualization sessions are formed.

The structure of VCA is shown in Fig. 3.
e g

VCA realization - QT, Web(Local), Web(PHP), Java, ...
The interface of VCA projects and The visualization interface of a
ts' items developing by session of a project (Run time) by
implemented visualization method S implemented visualization method.
|
O 9!
[Y L/ y h
Base widgets: 1 5 0 | Operator:
* Figures from elements: Projects « ValNormal Green
« Line. execution sessions + ValEmpty Grey
« Arc. o ! ! v * ValWarning Yelow
* Bezier curve. + ValEror Red
. ™
+ Link. CompreZSors—secttar . DeviceName Bluc
o Text. ~ MN: Mnemo-schemes ls _PagcBackGround Grey 10
* Image, video and audio. CULP Engineer ASC-TF:
+ Input area: ' : : b : {- PagcBackGround Iyary J
» Text. LUau
* CheckBox. Station Styles
+ ComboBox. = Contour: Contours groups
* List. Cul1o1_1
* Text editor. cul01_2
« Graph/diagram Cu301 ASC-TP:
« Protocol. = Graph: Graphics groups * FirstMousc MRightCliclk
+ Document. Cu101 . * SccondMouse Shift MLefiClick
+« Function. y, \ Cus0l D, « ConMouse MLefiClick
Derivative widgets [users) Boiler Nel HS: * « Left KeyLefi
« Analog signal indicator. Bp-|| [MN: Mnemo-schemes * Right KeyRight
+ Digital signal indicator. Heat load + RegMan Key9
+ PID regulator. Drum * RegAutomat Key0Q
* Contour of a contours group. | Contour: Contours groups Evenis cards
Standard pages: Heat load |
* Contours group. Heat load 2
» Graphies group. Dron 1
+ Result table. Graph: Graphics groups
* Compressor. Heat load 1
+ Boiler. Drm 1
Drum 2
Widgets f pages librany - J
VCA projects
A I Concept/engine VCA
L
| Suhbsystem «DB« Subsyslrern Subsystem Subsystem
«Securitys -Data acquisition (DAQ)- sArchivess
OpenSCADA core

Fig.3 Generalized structure of the VCA.

OpenSCADA - ULLVCAENngine 5

This architecture of the VCA allows the support of three levels of complexity of the developing process
of the management interface:

Forming of the VC interface (visualization and control) using the library of template frames by
placing the templates of the frames in the project and by the assignment of the dynamics.

« In addition to the first level the own creation of frames based on the library of derivatives and
basic widgets is to be done. Perhaps as a direct appointment of the dynamics in the widget, and the
subsequent appointment of it in the project.

In addition to the second level is performed the independently forming of derivatives widgets,
new template frames and also the frames with the use of mechanism of describing the logic of
interaction and handling of events in one of the languages of a user programming of OpenSCADA
system.

3.1. Frames and elements of visualization (widgets)

Frame is the window which directly provides information to the user in a graphical or text form. The
group of interconnected frames creates whole user interface of VC.

The contents of the frame is forming from the elements of visualization (widgets). Widgets may be the
basic primitives (different flat shapes, text, trend, etc.) and derivatives (formed from the basic or other
derivatives of widgets). All the widgets are grouped into the libraries. In the process, you can build your
own library of derivative widgets.

Actually the frame is also a widget that is used as a final element of visualization. This means that the
widget libraries can store the blanks of frames and the templates of the resulting pages of the user
interface.

Frames and widgets are passive elements that do not normally contain links to the dynamics and other
frames, but only provide information about the properties of the widget and the nature of the dynamics
(configuration), connected to the properties of the frame. Activated frames, ie containing links to the
dynamics and active connections, form the user interface and are stored in the projects. In some cases, it is
possible the direct appointment of the dynamics in the blanks of frames.

Derivative frames/widgets can contain other widgets (attached), which can be glued (associated) with
the logic of one another by one of the languages of programming available in the OpenSCADA system
(Fig.3.1.1).

OpenSCADA - ULLVCAENngine 6

e

™

13.654
dP101

= id PrmName ComOpen (" ValueText_eniablemfrali=EVAL REALY b
1Y elue _enahble]
* nName =] Lexi . Enablﬁ i . .
= 'UH.] — TEJ\'.T Valuc_x1=10+[Valuec_x2- 10" {val-dewn_boardl/(up_brd-dewn_brd):
. * gventl Sp_enahle=[spi=EVAL_REAL):
sp HSp_snable)
. Var . backgrml Sp_x1=-10+8p_x2-10)*[sp-down_bed)/ up_brd-deven_brd);
.] ValueText Button Variable_enahle=[vari=EVAL_REAL];
RIESUT enahble Y arlable_coable]
* down_brd Variakle_x 1=10+[Variakie x3-10)*var/ 1d:
e
. 1
cam_olpen value ComC IOSE £ fDigital part
= COIM_Close Text feu=n
- UL'IITI_‘.:"'_U = El'lablf.‘ lev_ent=(;
- 2] ComOpoi_chable={cvom_cpeil=EVAL BOCL]:
- L P P
= st_open Scale EVETL ComClose_enable=from_close!=EVAL B0 OL);
. 1 Lot ap_ciiablc=[com_stop!=EVAL_BOOL):
st_close L=+ enable * ha"ﬁ'kgr“d sfgp:;r_::ablti:u::_l::cu:-r-_:'.'.-u._lzom.]:
Widget's Lin Button| | s:Clese_enable=ist closei=EVAL BoOL)
e ", MCemOpen_snable)
properties: 1
-1 — o Ogeens_back grod=com_epen?Mlafllarme: Passives
| Velue ! l-n-T'nu:—Ll:
. bl conlswp 1:;|I'.L:|1'I
cnapie = enable '
. X% '| jev=Hpedal FLIDSYS, sirParac|ComDpen_svent dev_oni+=)
* ovent iflSpecial FLIbSYS. str Sizciicv]) broak
- xz iMev==rButionCllek: && leom_apen]
* backgrnd 1
Line noml_open-irie
— Bu“m Speecial. FLIBSY 5. messPut[«Llzerze+ Dssr+ezes1d, 2, Opens|
— S
sp — |
- cﬂablc Stopen ffLikewise for ComStap. ComClesc. StOpen u StClosc
» x1 + enable |\ o)
- X2 = gvent
Line Ibﬁgcm
e ——
e,
Variable
» enable StClose AftFune The element of
v %1 = enable * enable he
. X2 . even‘r * val contours group.
Line Functior
N

perfoper

losd

KSH6B

Fig.3.1.1 Example of the structure of the derived widget.

The widget is an element, by means of which it is provided:
- visualization of operational and archive information about TP;
- alarm about a violation of conduction of TP;
+ switching between the frames of TP;

- management of technological equipment and the parameters of conduction of TP.

Tuning and linkage of the widgets is done through their properties. Parent widget and the widgets it
contains, can be complemented by user properties. Then the user and static attributes are associated with
the properties of embedded widget by internal logic. To show the dynamics (ie, current and archived data),
properties of widgets are dynamized, that is linked with the attributes of the parameters of OpenSCADA
or properties of other widgets. Using to link of the nested widgets by means of the internal logic with the
available programming language of the OpenSCADA system eliminates the question of the
implementation of complex logic of visualization, thus providing high flexibility. Practically, you can
create fully dynamized frames with complex interactions at the level of the user.

Between widgets at different levels of hierarchy complex inheritance relations are arranged, which are
defined by the possibility of using some widgets by other ones, beginning with the library widget, and
finishing with the widget to the session. To clarify these features of the interaction in Fig. 3.1.2
comprehensive map of «uses» inheritance is shown.

OpenSCADA - UL.VCAENngine 7

T <

primitive

LW

Library
widget
P— L2 Wi
Container
widget

oy
LWE. W

Container
widget

LWe.W2

Container
widget

-~ ~
ILIVEL AT
Container
widget

Tarminal widget — The final element of the wvisualization, or primitive. On the side of
visualization becomes a visible image.

Library widget — Stored library widget. Be sure to inherit the visual image of the terminal widget
and override its data. Inheritance terminal widget can be both direct and through a series of
intermediate elements.

Container liorary widget — In fact, a link to another widget library (LW2.W1 -= LW1) or a
reference library container (LVW2 W1 -= LW2W1).

Project page — Element of interface visualization and control (WC) - The page is used to
construct a hierarchical interface VC for the end user.

Page widget— Page element for define data of library widget to the needs of the project page.

Session page — Session page for the execution page of the project in the context of the whole
interface clause.

Session widget — End element of visualization. Arranged in a hierarchical relationship, the
corresponding inheritance in container terminal widget widgets and widget libraries project.

Fig.3.1.2 Map of «uses» inheritance of the the components of conception/engine

At the session level widget contains a frame of values of calculation procedure. This frame is initiated
and used in the case of presence of the calculation procedure. At the time of the initialization the list of
parameters of the procedure is created and a compilation of procedure is performed with these parameters
in the module, implementing the selected programming language and encoded with the full name of the
widget. A compiled function is connected to the frame of values of the calculation procedure. Further the
calculation is performed with the frequency of session.

OpenSCADA - UI.VCAEngine 8

Calculation and processing of the widget as a whole runs in the following sequence:
- the events, which are available at the time of computation, are selected from the attribute
"event" of the widget;
- events are loaded into the parameter "event" of the frame of computation;
- values of the input connections are loaded in the frame of calculation;
- values of special variables are loaded in the computation frame (f frq, f start and f stop);
- values of selected parameters of the widget are loaded in the frame of computation;
computation;
- uploading of the computation frame values into the selected parameters of the widget;
- uploading of the event from the parameter "event" of the computation frame;
- processing th events and transfer the unprocessed events at the level above.

3.2. Project

Direct configuration and properties of the final visualization interface are contained in the project of the
visualization interface of the VCA. It may be created a lot of projects of the visualization interfaces.

Each project includes frames from the libraries of the frames/widgets. A frame provides a tool for the
dynamics to the properties described therein. All properties of the frame may be associated with dynamics
or authorized by the constants, and can act as a template for the formation of derivative pages. In fact,
each frame may contain multiple pages with their own dynamics. This mechanism allows to extremely
simplify the process of creating the same type of the frames by the ACS-TP engineer or by the user of
OpenSCADA for easy monitoring. An example of such one-type frames may be: groups of contours,
groups of graphs, reports and various tables. Mnemonic schemes of technological processes rarely come
under this scheme and will be formed directly in the description of the frame.

To provide the possibility of creation of a complex hierarchical interfaces of VC the frames, placed into
the project, can be grouped by name in the hierarchical form and by the appropriate visualization in the
form of a tree. In addition to this a mechanism of associative description of the calling of the frames
through regular expressions is provided.

Example of hierarchical representations of components of the project of the classical interface of VC of
the technological process with the description of standard expressions is given in Fig. 3.2.

OpenSCADA - ULLVCAENngine 9

-S01: Low pressure stage

=MM: Mnemo-schemes
EKU1 01 SO MR 101
kU201 SO MK K201
kU301 SO MK K301
-Cont; Contours group S01 Cont
~Graph: Graphics group SO1 Graph

~-0C2: High pressure stage

=MM: Mnemo-schemes
kU102 S02 MK K102
kU202 S02. MK K202
kU302 S02 MW K302
-Cont; Contours group S02 Cont
~Graph: Graphics group S02 Graph
Container — Widgets' virtual container
Cont — Real widget

Call examples
= Page type independent from signal ohject (S0):
Current; SO MK KA 04
Call: * Cont
Fesult: S0O1.ContKIU101 1
« Second S0 with type page saving:
Current: SO1 MM ELU101
Call: sQ2r

Fesult: S02 MM K102

Fig.3.2 Hierarchical view of components of the project of classical interface of VC of the technological
process.

In accordance with the Fig.3.1.2 objects of the session of the project inherit from an abstract object
"Widget" and use the appropriate objects of the project. Thus, the session ("Session") uses the project
("Project") and forms expand tree on its basis. Project page "Page" is directly used by the session page
"SessPage". The remaining objects ("SessWdg") are deployed in accordance with the hierarchy of page
elements (Fig.3.1.2).

In addition to the standard properties of an abstract widget ("Widget") elements of the pages of session
themselves get the following properties: storage of the frame of values of computational procedure,
calculation of the procedures and mechanism for processing of the events. Pages of the session, in
addition, contain a container of the following by the hierarchy pages. The session generally is computed
with the frequency and in the consistency:

+ «Page of the top level» -> «Page of the lower level»
+ «Widget of the lower level» -> «Widget of the top level»

OpenSCADA - UL.VCAEngine 10

This policy allows you to traverse the pages in accordance with the hierarchy, and to rise on the top
during the one iteration for the widget events.

The session supports the special properties of pages:
Container — page is a container for the underlying pages;
Template — page is a template for the underlying pages;
Empty — empty, inactive, page; this feature is used in conjunction with the property Container
for logical containers organization.

Based on these properties the following types of pages are realized:

Standard — The standard page (none property is set). It is the full final page.

Container — Full page with the feature of the container (Container).

Logical container — Logical container is actually not a page (Container|Empty). Performs
property of the intermediate and bunching element in the tree of pages.

Template — Template page (Template). Pure template page is used to describe the common
properties and hipping them in privately order in nested pages.

Container and template — The template and a container page (Template|Container). Combines
the functions of the template and the container.

Switching, opening, substitution and navigation through the pages is based on processing of the events
by the scenario in the attribute of the active widget "evProc". The scenario of this attribute is stored as a
list of commands with the syntax:<event>:<evSrc>:<com>:<prm>. Where:

event — the expected event;

evSrc — the path of the nested widget-source of the event;
com — session command;

prm — parameter of the command.

The following commands are implemented:
open — Opening page. Page to open is specified in the parameter <prm> both: in direct way and
as a template (example: /pg_so/1/*/*).
next — The opening of the next page. Page to open is specified in the parameter <prm> as a
template (example: /pg_so/*/*/$).
- prev — Opening of the previous page. Page to open is specified in the parameter <prm> as a
template (example: /pg_so/*/*/$).

Special characters of the template are deciphered as follows:

pg_so — direct name of the desired page with the prefix. Requires the compulsory accordance
and is used to identify the last open page;

1 — name of a new page in a general way, without a prefix. It is ignored when it detects a
previous open pages;

* — the page is taken from the name of a previous opened page or the first available page is
substituted, if the previous opened page is missing;

8 — points the place of the opened page relative to which you are to go to the next or to the
previous one.

To understand the mechanism of the templates lets cite some real examples:
Changing the signal object:
Command: open:/pg_so/2/*/*
In was: /pg_so/pg 1/pg mn/pg 1
It is: /pg_so/pg 2/pg mn/pg 1
Switching of the type:
Command: open:/pg_so/*/gkadr/*
It was: /pg_so/pg_1/pg mn/pg 1
Itis: /pg_so/pg_1/pg_gkadr/pg 1
Next/previous page of the type:
Command: next:/pg_so/*/*/$
It was: /pg_so/pg_1/pg mn/pg 1
Itis: /pg so/pg 1/pg mn/pg 2

OpenSCADA - UL.VCAEnNngine 11

As an example lets cite the scenario of operation of the main page of the user interface:
ws_BtPress:/prev:prev:/pg so/*/*/$
ws_BtPress:/next:next:/pg so/*/*/$
ws BtPress:/go mn:open:/pg so/*/mn/*
ws BtPress:/go_graph:open:/pg so/*/ggraph/*
ws_BtPress:/go_cadr:open:/pg so/*/gcadr/*
ws_BtPress:/go view:open:/pg so/*/gview/*
ws_BtPress:/go_doc:open:/pg so/*/doc/*
ws BtPress:/go_resg:open:/pg so/rg/rg/*
ws BtPress:/sol:open:/pg so/l/*/*
ws_BtPress:/so2:open:/pg_so/2/*/*
ws_BtPress:/so3:open:/pg so/3/*/*
ws_BtPress:/sod:open:/pg so/4/*/*
ws BtPress:/so5:open:/pg _so/5/*/*
ws BtPress:/so6:open:/pg so/6/*/*
ws_BtPress:/so7:open:/pg so/7/*/*
ws_BtPress:/so8:open:/pg so/8/*/*
ws BtPress:/so9:open:/pg so/9/*/*
ws BtPress:*:open:/pg control/pg terminator

In conjunction with the mechanism, above described, on the side of the visualization (RunTime) there
is the logic regulating how to open the pages. The logic is built on the following attributes of the basic
element "Box":

- pgOpen — Sign "The page is opened".

« pgNoOpenProc — Sign "Perform the page, even if it is not opened".

« pgOpenSrc — Contains the address of the widget or of the page which has opened the current.
In the case of the nested container widget here it is contained the address of the included page. To
open the pages from the script here it is enough to indicate the address of the widget-source of the
opening.

- pgGrp — Group of pages. Used for conjunction of the containers of the pages with the pages in
accordance with the general group.

The logic of the method of the opening the pages work in the following way:
- if the page has the group "main" or coincides with a group of the page in the main window or
there is no page on the main window, then open the page in the main window;
- if the page has a group which coincides with the group one of the containers of the current page,
then open it in the container;
- if the source of the opening of the page coincides with the current page, then open it as an
additional window over the current page;
- transmit a call for request for the opening to the additional windows with the processing in each
of the first three paragraphs;
- if any one of the relative windows doesn't open a new page, then open it as a related window of
the main window.

3.3. Styles

We know that people can have individual characteristics in the perception of graphical information. If
these features are not taken into account, it is possible to obtain the rejection and seizure of the user to the
interface of VC. This rejection and seizure can lead to fatal errors in the management of TP, as well as
traumatize the human by the continuous work with such interface. In SCADA systems the agreements are
adopted, which regulate the requirements for creating a unified interface of VC normally perceived by
most people. This is actually eliminates the features of people with some deviations.

In order to take this into account and allow centralized and easy to change the visual properties of the
interface module is scheduled to implement a theme manager of the visualization interface.

User can create many themes, each of which will keep the color, font and other properties of the
elements of the frame. Simple changing of the theme will allow you to change the interface of VC, and the

OpenSCADA - UL.VCAEnNngine 12

possibility of appointing an individual theme in the user's profile allows to take into account his individual
characteristics.

To realize this opportunity, when you create a frame, it is necessary for the properties of color, font and
others set the «Config» (of the table if the «process» tab) in the value of «From style» (Fig. 3.7). And in
the parameter «Config template» to specify the identifier of the style field. Further, this field will
automatically appear in the Style Manager and will be there to change. Style Manager is available on the
project configuration page in the tab «Styles» (Fig. 3.3). On this tab you can create new styles, delete old
ones, change the field of the style and delete unnecessary.

r" 01 OpenSCADA QTCfg: Demo statuion

File Edit Wiew Help QTStarter

88000 RxX 14l 200 2@
e =

= a Demao statuion '@; Prfuect AGLKS
"; Data Bases
W) Security [Froject | Fages | Mime data J Styles l
'é} Transports
a0 Transpart protocols Style: [Defiult |v]
J Data.acqumtlnn Name: [Defaun
| Archives
@ Specials Properties:
= @| User interfaces

Cperation userinterface (27
Systemn configurator (WEB)
‘isual control area engine
Proyect:

=|8 Signal groups (temp

1| backColar | gray

R L

- i AGLES

Iﬂ'.l'rdget's library:
Sesgion:
Funclions:

I

£
Systemn configurator (2T) [
QT GUI starter
Dynamic WEB configurator

Operation user interface (WH o
Qll Modules sheduler -

IO NI

Jlroman]

Fig. 3.3 "Styles" tab of the configuration page of the project.

In general the styles are available from the project level. At the level of libraries of widgets you can
only define styles fields of widgets. At the project level, at the choice of style it is started the work with
styles, which includes access to the fields of styles instead of direct attribute values. In fact, this means
that when reading or writing a widget attribute these operations will be carried out with the corresponding
field of the chosen style.

When you run the project execution it will be used the set in the project style. Subsequently, the user
can select a style from the list of available ones. The user's style will be saved and used next time you run
the project.

OpenSCADA - UI.VCAEngine 13

3.4. Events, their processing and the events' maps

Given the range of tasks for which the OpenSCADA system may be used, it is necessary to provide a
tool for management of interactive user events. This is due to the fact that in dealing with individual tasks
of embedded systems, input and control devices can greatly vary. But it is enough to look at the regular
office keyboard and notebook one, that would remove any doubt about the necessity for the manager of
events.

Event manager must work using the maps of events. Map of the events — is the list of named events,
indicating their origin. The origin of the events can be a keyboard, mouse, paddle, joystick, etc. If you
have any event manager of the events is looking for it in the active map and compares with the name of
the event. A comparison name of the event is placed in the queue for processing. Widgets in this case must
process the given queue of events.

The active map of events is specified in the profile of each user or is set by default.

In general, four types of events are provided:

- events of the images of VCA (prefix: ws), for example, pressing of the button event —
ws_BtPress;

« keyboard events (prefix: key) — all events from mouse and keyboard in the form of —
key presAltl;

- user events (prefix: usr) are generated by the user in the procedures of the calculation of
widgets;

- mapping of the event (prefix: map) — events from the map of events.

Event itself represents little information, especially if its processing occurs at higher level. For the
unequivocal identification of the event and its source in the whole the event is recorded as follows:
"ws_BtPress:/curtime". Where:

ws_BtPress — event;
/curtime — the path to the child element that has generated the event.

Table 3.4 provides a list of standard events, the support of which should be provided in visualizers of
VCA.

Table 3.4. Standard events

Id Description
Keyboard events: key_[pres|rels][Ctrl|Alt|Shift] {Key}
*SC#3b Scan code of the kye.
*#2cdS Code of the unnamed key.
*Esc "Esc".
*BackSpace Removing of the previous character — "<--".
*Return, *Enter Enter — "Enter".
*Insert Insertion — "Insert".
*Delete Deleting — "Delete".
*Pause Pause — "Pause".
*Print Print of the screen — "Print Screen".
*Home Home — "Home".
*End End — "End".
*Left Left — "<-".
*Up Up —'".

OpenSCADA - UL.VCAEnNngine 14

Id Description
*Right Right —"->".
*Down Down —"V".
*PageUp Page up — "PageUp".
*PageDown Page down — "PageDown".
*F1 - *F35 Function key from "F1" to "F35".
*Space Space —'".
* Apostrophe Apostrophe — "
* Asterisk Asterisk on an additional field of the keyboard — '*'.
*Plus Plus on an additional field of the keyboard — '+'.
*Comma Comma —",".
*Minus Minus — '-'.
*Period Period —'.".
*Slash Slash —"\'.
*0 - *9 Number from '0' to '9'".
*Semicolon Semicolon — ;.
*Equal Equal —'=".
*A - *Z Keys of Latin alphabet from 'A' to 'Z".
*BracketLeft Left square bracket - '[".
*BackSlash Backslash — '/'.
*BracketRight Right square bracket — ']'.
*QuoteLeft Left quote — "

Keyboard focus events.

ws_FocusIn

Focus is obtained by a widget.

ws_FocusOut

Focus is lost by a widget.

Mouse events:

key mouse[Pres|Rels][Left|Right|
Midle]

Pressed/released the mouse button.

key mouseDbIClick

Double-click the left mouse button.

Events handshake on the side of the vis

ualizer.

ws_alarmLev

Acknowledgment of all violations by all means notice.

ws_alarmLight

Acknowledgment of all violations of the notification by
flashing/light.

ws_alarmAlarm

Acknowledgment of all violations of the notification buzzer.

ws_alarmSound

Acknowledgment of all violations of the notification
sound/speech.

Events of the primitive of elemental figure ElFigure:

ws_Fig[Left|Right/Midle|DblClick]

Activating of the figures (fills) by the mouse button.

OpenSCADA - UL.VCAEnNgine

15

Id Description

ws_Fig{n}[Left|Right/Midle|
DbIClick]

Events of the primitive of form elements FormEl:

Activating of the figure (fill) {n} by the mouse button.

ws_LnAccept A new value in the input line is set.
ws_TxtAccept The value of the the text editor is changed.
ws_ChkChange The state of the flag is changed.
ws_BtPress The button is pressed.

ws_BtRelease The button is released.
ws_BtToggleChange Button toggle is changed.
ws_CombChange The value of the combo box is changed.
ws_ListChange The current list item is changed.
ws_SliderChange Changing of the the slider position.

Events of the primitive of media content Media:

ws_MapAct{n}[LeftRightMidle] Media area with the number {n} is activated by the mouse button.

Events are the main mechanism of notification and is actively used for user interaction. For the event
processing there are two mechanisms: the script used to control the opening of the pages and the
computational procedure of the widget.

The mechanism "Scripts for the control the opening of pages" based on the basic attribute of the widget
"evProc" and is described in detail in section 3.2.

The mechanism "Processing the event with the help of computational procedure of the widget" is based
on the attribute "event" and the user procedure of calculating written with the help of the language of the
user programming of OpenSCADA. Events, in process of receipt, are accumulated in the attribute "event"
till the moment of call of computational procedure. Computational procedure is called with the specified
frequency of calculating the widget and receives a value for the attribute "event" as the list of events. In
the calculation procedure the user can: analyze, process and delete the processed events from the list, and
add to the list new events. The remaining, after the procedure execution, events are analyzed for
compliance with the conditions of the call by means of script of the first mechanism, after which the
remaining events are transmitted to the upper by the hierarchy widget to be processed by it, with the
correction of the path of events in accordance with the hierarchy of the penetration of the event.

The contents of the attribute "event" is a list of events in the format <event>:<evSrc>, with the event
on the separate line. Here is an example of processing events in the Java-like programming language of
the OpenSCADA:

using Special.FLibSYS;
ev_rez = "";

off = 0;

while (true)

{

sval = strParse (event,0,"\n",off);

if(sval == "") break;

else 1f(sval == "ws BtPress:/cvt light") alarmSt = 0x1000001;
else 1if(sval == "ws BtPress:/cvt alarm") alarmSt = 0x1000002;
else 1f(sval == "ws_BtPress:/cvt_sound") alarmSt = 0x1000004;

else ev_rez+=sval+"\n";

}

event=ev_rez;

OpenSCADA - UL.VCAEnNngine 16

3.5. Signaling (Alarms)

An important element of any visualization interface is the user notification about the violation — alarm.
To simplify the perception, but also in mind the close connectivity of visualization and notification
(typically notification is amplified with the visualization) it is decided to integrate the interface of a
notification in the visualization interface. To do this, all the widget provides two additional attributes (of
the session level): "alarm" and "alarmSt". Attribute "alarm" is used to form the signal by the widget,
according to his logic, and attribute "alarmSt" is used to control the signaling fact of the branch of the tree
of the session of the project.

Attribute "alarm" is a line and has the following format: {lev|categ|message|type|tp arg}
Where:
« lev — signaling (alarm) level; number from 0 to 255;
- categ — alarm category; par