
The module of subsystem “Data acquisition”
<JavaLikeCalc>

Module: JavaLikeCalc
Name: Calculator based on Java-like language.
Type: DAQ
Source: daq_JavaLikeCalc.so
Version: 1.9.5
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides based on java like language calculator and engine of libraries. The user can
create and modify functions and libraries.

License: GPL

Contents table
The module of subsystem “Data acquisition” <JavaLikeCalc>..1

Introduction..2
 1. Java-like language ..4

 1.1. Elements of language ..4
 1.2. Operations of language ...4
 1.3. Embedded functions of language ..5
 1.4. Operators of the language ...6
 1.5. Object ..7
 1.6. Examples of programs on the language ...10

 2. Controller and its configuration ...11
 3. The parameter of the controller and its configuration ...12
 4. Libraries of functions of module ..13
 5. User functions of the module ..13
 6. User programming API ...13

Introduction
The module of controller JavaLikeCalc provides a mechanism for creating of functions and libraries on

Java-like language. Description of functions on Java-like language is reduced to the binding parameters of
the function with algorithm. In addition, the module has the functions of the direct computation by
creation of the computing controllers.

Direct computations are provided by the creation of controller and linking it with the function of this
module. For linked function it is created the frame of values, with which the periodically calculating is
carried out.

The module implements the functions of the horizontal redundancy, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational function, in
order to shockless catch of the algorithms.

Parameters of functions can be freely created, deleted or modified. The current version of the module
supports up to 65535 parameters of the function in the sum with the internal variables. View of the editor
of functions is shown in Figure 1.

Fig.1. View of the editor of functions.

After any program changing or configuration of parameters recompiling of the programs with
forestalling of linked with function objects of values of TValCfg is performed. Language compiler is built

OpenSCADA - DAQ.JavaLikeCalc 2

using well-known generator grammar «Bison», which is compatible with the not less well-known tool
Yacc.

The language uses the implicit definition of local variables, which is to define a new variable in the
case of assigning a value to it. This type of local variable is set according to the type of the assigning
value. For example, the expression <Qr=Q0*Pi+0.01;> will define Qr variable with the type of variable
Q0.

In working with various types of data language uses the mechanism of casting the types in the places
where such casting is appropriate.

To comment the sections of code in the language it is provided «//» and «/ * ... * /» characters.
Everything that comes after "//" up to the end of the line and between «/ * ... * /», is ignored by the
compiler.

During the code generation language compiler produces an optimization of constants and casting the
types of the constants to the required type. Optimizing of the constants means the implementation of
computing of the constants in the process of building of the code under the two constants and paste the
result in the code. For example, the expression <y=pi*10;> reduces to a simple assignment <y=31.4159;>.
Casting the types of constants to the required type means formation of the constant in the code which
excludes the cast in the execution process. For example, the expression <y=x*10>, in the case of a real
type of the variable x, is transformed into <y=x*10.0>.

The language supports calls of the external and internal functions. Name of any function in general is
perceived as a character, test for ownership of which by a particular category is done in the following
order:

• keywords;
• constants;
• built-in functions;
• external functions, object's functions and OpenSCADA nodes functions (DOM) ;
• already registered characters of variables, object's attributes and hierarchy of objects DOM;
• new attributes of the system parameters;
• new function parameters;
• new automatic variable.

Call of the external function, attribute of system parameters is written as an address to the object of
dynamic tree of the object model of the system OpenSCADA in the form of:
<DAQ.JavaLikeCalc.lib_techApp.klapNotLin>.

To provide the possibility of writing custom procedures for the administration of the various
components of OpenSCADA module provides the implementation of API pre-compilation of custom
procedures of individual components of OpenSCADA on the implementation of Java-like language. These
components are already: Templates of the parameters of subsystem “Data acquisition” and Visual control
area (VCA).

OpenSCADA - DAQ.JavaLikeCalc 3

 1. Java-like language

 1.1. Elements of language
Keywords: if, else, while, for, break, continue, return, using, true, false.

Constants:
• decimal: numerals 0–9 (12, 111, 678);
• octal: numerals 0–7 (012, 011, 076);
• hexadecimal: numerals 0–9, letters a-f or A-F (0x12, 0XAB);
• real: 345.23, 2.1e5, 3.4E-5, 3e6;
• boolean: true, false;
• string: "hello", without next string went but with support of a direct concatenation of string
constants.

Types of variables:
• integer: -231...231, EVAL_INT(-2147483647);
• real: 3.4 * 10308, EVAL_REAL(-3.3E308);
• boolean: false, true, EVAL_BOOL(2);
• string: sequence of characters-bytes (0...255) any length, limited by memory capacity and DB
storage; EVAL_STR("<EVAL>").

Built-in constants: pi = 3.14159265, e = 2.71828182, EVAL_BOOL(2), EVAL_INT(-2147483647),
EVAL_REAL(-3.3E308), EVAL_STR("<EVAL>")

Attributes of the parameters of system OpenSCADA (starting from subsystem DAQ, as follows <Type
of DAQ module>.< Controller>.<Parameter>.<Attribute>).

The functions of the object model of the system OpenSCADA.

 1.2. Operations of language
Operations supported by the language presented in the table below. The priority of operations is

reduced from top to bottom. Operations with the same priority is composed of one color group.

Symbol Описание

() Call of the function.

{} Program blocks.

++ Increment (post and pre).

-- Decrement (post and pre).

- Unary minus.

! Logical negation.

~ Bitwise negation.

* Multiplication.

/ Division.

% The remainder of integer division.

+ Addition

- Subtraction

<< Bitwise shift left

>> Bitwise shift right

> Greater

>= Greater than or equal to

OpenSCADA - DAQ.JavaLikeCalc 4

Symbol Описание

< Less

<= Less than or equal to

== Equals

!= Unequal

| Bitwise «OR»

& Bitwise «AND»

^ Bitwise «Exclusive OR»

&& Boolean «AND»

|| Boolean «OR»

?: Conditional operation (i=(i<0)?0:i;)

= Assignment.

+= Assignment with addition.

-= Assignment with subtraction.

*= Assignment with multiplication.

/= Assignment with division.

 1.3. Embedded functions of language
Virtual machine of the language provides the following set of built-in functions general-purpose:

• double max(double x, double x1) — maximum value of x and x1;
• double min(double x, double x1) — minimum value of x and x1;
• string typeof(ElTp vl) — type of value vl.

To ensure a high speed in mathematical calculations module provides embedded mathematical
functions that are called at the level of commands of virtual machine. Predefined mathematical functions:

• double sin(double x) — sine x;
• double cos(double x) — cosine x;
• double tan(double x) — tangent x;
• double sinh(double x) — hyperbolic sine of x;
• double cosh(double x) — hyperbolic cosine of x;
• double tanh(double x) — hyperbolic tangent of x;
• double asin(double x) — arcsine of x;
• double acos(double x) — arc cosine of x;
• double atan(double x) — arctangent of x;
• double rand(double x) — random number from 0 to x;
• double lg(double x) — decimal logarithm of x;
• double ln(double x) — natural logarithm of x;
• double exp(double x) — exponent of x;
• double pow(double x, double x1) — erection of x to the power x1;
• double sqrt(double x) — the square root of x;
• double abs(double x) — absolute value of x;
• double sign(double x) — sign of x;
• double ceil(double x) — rounding the number x to a greater integer;
• double floor(double x) — rounding the number x to a smaller integer.

OpenSCADA - DAQ.JavaLikeCalc 5

 1.4. Operators of the language
The total list of operators of the language:

• var — operator for variable initialize;
• if — operator of the condition "If";
• else — operator of the condition "ELSE";
• while — description of the loop while;
• for — description of the loop for;
• in — for-cycle separator for object's properties scan;
• break — interrupt of the execution of the loop;
• continue — continue the execution of the loop from the beginning;
• using — allows to establish scope of functions of often used library (using Special.FLibSYS;)
for future reference only by means of the function name;
• return — interruption of the function and return of the result, the result is copied to the attribute
with the flag return (return 123;);
• new — object creation, realized object "Object", massif "Array" and regular expressions
"RegExp".

 1.4.1. Conditional operators

The language of module supports two types of conditions. First — this is the operation of condition for
use within the expression, the second — a global, based on the conditional operators.

Conditions inside the expression is based on the operations of «?» And «:». As an example we'll write
the following practical expression <st_open=(pos>=100)?true:false;>, which reads as «If the variable
<pos> greater than or equal to 100, the variable st_open is set to true, otherwise — to false.

The global condition is based on the conditional operators «if» and «else». An example is the same
expression, but written by other means <if(pos>100) st_open=true; else st_open=false;>. As shown, the
expression is written in a different way, but is read in the same way.

 1.4.2. Loops

Two types of loops are supported: while, for and for-in. The syntax of the loops corresponds to
programming languages: C++, Java, and JavaScript.

Loop while generally written as follows:
while(<condition>) <body of the loop>;

Loop for is written as follows:
for(<pre-initialization>;<condition>;<post-calculation>) <body of the loop>;

Loop for-in is written as follows:
for(<variable> in <object>) <body of the loop>;

Where:
<condition> — expression, determining the condition;
<body of the loop> — the body of the loop of multiple execution;
<pre-initialization> — expression of pre-initialization of variable of the loop;
<post-calculation> — expression of modification of parameters of the loop after the next iteration;
<variable> — variable, which will contain object's properties name at scan;
<object> — object for which properties scan gone.

 1.4.3. Special characters of string variables

The language supports the following special characters of string variables:
"\n" — line feed;
"\t" — tabulation symbol;
"\b" — culling;

OpenSCADA - DAQ.JavaLikeCalc 6

"\f" — page feed;
"\r" — carriage return;
"\\" — the character itself '\'.
"\041" — symbol '!' wrote by octal number;
"\x21" — symbol '!' wrote by hex number.

 1.5. Object
The language provides the data type "Object" support. The data type "Object" is associated container of

properties and functions. The properties can support data of fourth basic types and other objects. The
access to properties is doing through the dot to object <obj.prop> and also by property placement into the
rectangle brackets <obj["prop”]>.It is obvious that the first mechanism is static, while the second lets you
to specify the name of the property through a variable. Creating an object is carried by the keyword
<new>: <varO = new Object()>. The basic definition of the object does not contain functions. Copying of
an object is actually makes the reference to the original object. When you delete an object is carried out
the reducing of the reference count, and when a reference count is set to zero then object is removed
physically.

Different components can define basic object with special properties and functions. The standard
extension of the object is an array "Array", which is created by the command <varO = new
Array(prm1,prm2,prm3,...,prmN)>. Comma-separated parameters are placed in the array in the original
order. If the parameter is the only one the array is initiated by the specified number of empty elements.
Peculiarity of the array is that it works with the properties as the indexes and their complete naming is
meaningless, and therefore the mechanism of addressing only by the placing the index into square brackets
<arr[1]> is accessible. Array stores the properties in its own container of the one-dimensional array.
Digital properties of the array are used to access directly to the array, and the characters work as object
properties. For more details about the properties and functions of the array can be read here.

The object of regular expression RegExp is created by command <varO = new RegExp(pat,flg)>,
where <pat> — pattern of regular expression, and <flg> — match flags. The object for work with regular
expressions, based on the library PCRE. In the global search set object attribute "lastIndex", which allows
you to continue searching for the next function call. In the case of an unsuccessful search for the attribute
"lastIndex" reset to zero. For more details about the properties and functions of the array can be read here.

For random access to the arguments of the functions provided the arguments object, which you can
refer to by the symbol "arguments". This object contains the property "length" with a number of
arguments in functions and allows you to access to a value of the argument by its number or ID. Consider
the enumeration of the arguments on the cycle:

args = new Array();
for(var i=0; i < arguments.length; i++)

arg[i] = arguments[i];

The basic types have the partial properties of the object. Properties and functions of the basic types are
listed below:

• NULL type, functions:
• bool isEVal(); — Return "true".

• Logical type, functions:
• bool isEVal(); — Check value to "EVAL".
• string toString(); — Performs the value as the string “true” or “false”.

• Integer and real number:
Properties:

• MAX_VALUE — maximum value;
• MIN_VALUE — minimum value;
• NaN — error value.

Functions:
• bool isEVal(); — Check value to "EVAL".

OpenSCADA - DAQ.JavaLikeCalc 7

http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h946-4
http://wiki.oscada.org/HomePageEn/Doc/ProgrammManual?v=ksv#h946-3

• string toExponential(int numbs = -1); — Return the string of the number, formatted in
exponential notation, and with the number of significant digits <numbs>. If <numbs> is
missing the number of digits will have as much as needed.
• string toFixed(int numbs = 0, int len = 0, bool sign = false); — Return the string of the
number, formatted in the notation of fixed-point, and with the number of significant digits
after the decimal point <numbs> for minimum length <len> and strong sign present
<sign>. If <numbs> is missing the number of digits after the decimal point is equal to zero.
• string toPrecision(int prec = -1); — Return the string of the formatted number with the
number of significant digits <prec>.
• string toString(int base = 10, int len = -1, bool sign = false); — Return the string of the
formatted number of integer type with the following representation base (2-36) for
minimum length <len> and strong sign present <sign>.

• String:
Properties:

• int length — string length.

Functions:
• bool isEVal(); — Check value to "EVAL".
• string charAt(int symb); — Extracts from the string the symbol <symb>.
• int charCodeAt(int symb); — Extracts from the string the symbol code <symb>.
• string concat(string val1, string val2, ...); — Returns a new string formed by joining the
values <val1> etc. to the original one.
• int indexOf(string substr, int start); — Returns the position of the required string
<substr> in the original row from the position <start>. If the initial position is not
specified then the search starts from the beginning. If the search string is not found then -1
is returned.
• int lastIndexOf(string substr, int start); — Returns the position of the search string
<substr> in the original one beginning from the position of <start> when searching from
the end. If the initial position is not specified then the search begins from the end. If the
search string is not found then -1 is returned.
• int search(string pat, string flg = ""); — Search into the string by pattern <pat> and
pattern's flags <flg>. Return found substring position or -1 for else.

var rez = "Java123Script".search("script","i");
// rez = 7

• int search(RegExp pat); — Search into the string by RegExp pattern <pat>. Return
found substring position or -1 for else.

var rez = "Java123Script".search(new RegExp("script","i"));
// rez = 7

• Array match(string pat, string flg = ""); — Call match for the string by pattern <pat>
and flags <flg>. Return matched substring (0) and subexpressions (>0) array. Set "index"
attribute of the array to substring position. Set "input" attribute to source string.

var rez = "1 plus 2 plus 3".match("\\d+","g");
// rez = [1], [2], [3]

• Array match(TRegExp pat); — Call match for the string and RegExp pattern <pat>.
Return matched substring (0) and subexpressions (>0) array. Set "index" attribute of the
array to substring position. Set "input" attribute to source string.

var rez = "1 plus 2 plus 3".match(new RegExp("\\d+","g"));
// rez = [1], [2], [3]

• string slice(int beg, int end); string substring(int beg, int end); — Return the string
extracted from the original one starting from the <beg> position and ending be the <end>.
If the beginning or end is negative, then the count is conducted from the end of the line. If
the end is not specified, then the end is the end of the line.
• Array split(string sep, int limit); — Return the array of strings separated by <sep> with
the limit of the number of elements <limit>.
• Array split(RegExp pat, int limit); — Return the array of strings separated by RegExp
pattern <pat> with the limit of the number of elements <limit>.

Rez = "1,2, 3 , 4 ,5".split(new RegExp("\\s*,\\s*"));

OpenSCADA - DAQ.JavaLikeCalc 8

// rez = [1], [2], [3], [4], [5]
• string insert(int pos, string substr); — Insert substring <substr> into this string's
position <pos>.
• string replace(int pos, int n, string str); — Replace substring into position <pos> and
length <n> to string <str>.

rez = "Javascript".replace(4,3,"67");
// rez = "Java67ipt"

• string replace(string substr, string str); — Replace all substrings <substr> to string
<str>.

Rez = "123 321".replace("3","55");
// rez = "1255 5521"

• string replace(RegExp pat, string str); — Replace substrings by pattern <pat> to string
<str>.

rez = "value = \"123\"".replace(new
RegExp("\"([^\"]*)\"","g"),"``$1''"));
// rez = "value = ``123''"

• real toReal(); — Convert this string to real number.
• int toInt(int base = 0); — Convert this string to integer number in accordance with the
base <base> (from 2 to 36). If base is 0, then the prefix will be considered a record for
determining the base (123-decimal; 0123-octal; 0x123-hex).
• string parse(int pos, string sep = ".", int off = 0); — Get token with numbet <pos> from
the string when separated by <sep> and from offset <off>. Result offset is returned to back
<off>.
• string parsePath(int pos, int off = 0); — Get path token with numbet <pos> from the
string and from offset <off>. Result offset is returned to back <off>.
• string path2sep(string sep = "."); — Convert path into this string to separated by <sep>
string.

For access to system objects (nodes) of the OpenSCADA the corresponding object is provided which is
created simply by specifying the enter point "SYS" of the root object OpenSCADA, and then with the
point separator the sub-objects in accordance with the hierarchy are specified. For example, the call of the
request function over the outgoing transport is carried out as follows:
SYS.Transport.Sockets.out_testModBus.messIO(strEnc2Bin("15 01 00 00 00 06 01 03 00 00 00 05"));.

OpenSCADA - DAQ.JavaLikeCalc 9

 1.6. Examples of programs on the language
Here are some examples of programs on Java-like language:

//Model of the course of the executive machinery of ball valve
if(!(st_close && !com) && !(st_open && com))
{

tmp_up=(pos>0&&pos<100)?0:(tmp_up>0&&lst_com==com)?tmp_up-1./frq:t_up;
pos+=(tmp_up>0)?0:(100.*(com?1.:-1.))/(t_full*frq);
pos=(pos>100)?100:(pos<0)?0:pos;
st_open=(pos>=100)?true:false;
st_close=(pos<=0)?true:false; lst_com=com;

}
//Valve model
Qr=Q0+Q0*Kpr*(Pi-1)+0.01;
Sr=(S_kl1*l_kl1+S_kl2*l_kl2)/100.;
Ftmp=(Pi>2.*Po)?Pi*pow(Q0*0.75/Ti,0.5):

(Po>2.*Pi)?Po*pow(Q0*0.75/To,0.5):
pow(abs(Q0*(pow(Pi,2)-pow(Po,2))/Ti),0.5);

Fi-=(Fi-7260.*Sr*sign(Pi-Po)*Ftmp)/(0.01*lo*frq);
Po+=0.27*(Fi-Fo)/(So*lo*Q0*frq);
Po=(Po<0)?0:(Po>100)?100:Po;
To+=(abs(Fi)*(Ti*pow(Po/Pi,0.02)-To)+

(Fwind+1)*(Twind-To)/Riz)/(Ct*So*lo*Qr*frq);

OpenSCADA - DAQ.JavaLikeCalc 10

 2. Controller and its configuration
The controller of the module connects with the functions of libraries, built with his help, to provide

immediate calculations. In order to provide calculated data in the system OpenSCADA parameters can be
created in the controller. Example of the configuration tab of the controller of the given type depicted in
Figure 2.

Fig.2. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enable», «Run» and the name of the database
containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «To enable» and «To start».
• Name of table to store the settings.
• Address of the computational function.
• The calculation schedule policy, priority and number of iterations in one cycle of calculating
task.

OpenSCADA - DAQ.JavaLikeCalc 11

Tab "Calculations" of the controller (Fig. 3) contains the parameters and the text of the program,
directly performed by the controller. Also for monitoring of execution the time of calculating of the
program is shown. Module provides a number of special options available in the controller program:

• f_frq — The controller program calculate frequency, read-only.
• f_start — First calculate of the controller program, start, read-only.
• f_stop — Last calculate of the controller program, stop, read-only.
• this — The controller object.

Fig.3. Tab “Calculations” of the controller.

 3. The parameter of the controller and its configuration
Parameter of the controller of the module executes the function of providing the access to the results of

computation of the controller to the system OpenSCADA by attributes if the parameters. Configuration tab
contains only one specific field of the, set the controller only contains a field of listing the parameters of
calculated function, which should be reflected.

OpenSCADA - DAQ.JavaLikeCalc 12

 4. Libraries of functions of module
The module provides a mechanism to create libraries of user functions on Java-like language. Example

of the configuration tab of the library is depicted in Figure 4. The tab contains the basic fields: status,
identifier, name and description, and also address of the table, in which the library is kept. In the
“Functions” tab of the library besides the list of functions the form of copying functions is contained.

Fig.4. Tab of the configuration of the library.

 5. User functions of the module
Function, as well as the library, contains the basic configuration tab, tab of the formation of the

program and the parameters of function (Fig. 1), as well as the performance tab of the created function.

 6. User programming API
Some objects of the module provides functions for user's programming.

The object "Functions library" (SYS.DAQ.JavaLikeCalc["lib_Lfunc"])
• ElTp {funcID}(ElTp prm1, ...) — call the library function {funcID}. Return result of the called
function.

The object "User function" (SYS.DAQ.JavaLikeCalc["lib_Lfunc"]["func"])
• ElTp call(ElTp prm1, ...) — call the function with parameters <prm{N}>. Return result of the
called function.

OpenSCADA - DAQ.JavaLikeCalc 13

	The module of subsystem “Data acquisition” <JavaLikeCalc>
	Introduction
	 1. Java-like language
	 1.1. Elements of language
	 1.2. Operations of language
	 1.3. Embedded functions of language
	 1.4. Operators of the language
	 1.5. Object
	 1.6. Examples of programs on the language

	 2. Controller and its configuration
	 3. The parameter of the controller and its configuration
	 4. Libraries of functions of module
	 5. User functions of the module
	 6. User programming API

