
OpenSCADA 0.7.0

Contents table
OpenSCADA 0.7.0.................................................................................................................1

Introduction........................................................................................................................1
   1 Implementation of planned tasks  ...................................................................................3
   2 Optimization, increasing of stability, sustainability and system's performance.  ............3
   3 Improvement and stabilization of the VCA.  ...................................................................5
   4 Formation and stabilization of API of user's programming.  ...........................................6
   5 System-wide expansions.  ..............................................................................................7
   6 Significant improvements and fixes of the individual modules.  .....................................8
   7 Formation of the documentation, translation of documentation and interface.  .............9
   8 Unification of the demonstration database.  ...................................................................9
   9 Solutions, based on OpenSCADA  .................................................................................9
Conclusion.......................................................................................................................10
Links.................................................................................................................................10

Introduction
The release of an open SCADA (Supervisory control and data acquisition) system of version 

0.7.0 is the first stable, industrial release, which is associated with the completion of beta testing 
that began from version 0.6.4.

The main purpose of this release is providing the community of users and developers of free 
software with the platform for the solutions of complex automation systems and related solutions, 
as well as providing commercial services on the basis of the OpenSCADA project.

This  release  is  the  first  stable  release,  for  which  technical  support  is  available  from  the 
developers and for which it is planned to release fixes during a long time.

This document is the processing (compilation) of <ChangeLog> document of the OpenSCADA 
system  version  0.6.4,  which  is  designed  to  cover  brief  and  clear  the  new  features  of  the 
OpenSCADA system.  To get  acquainted with all  the changes in the OpenSCADA system it  is 
possible  in  the  file  ChangeLog  from  the  distribution  kit  of  the  system,  or  here  (RU): 
http://wiki.oscada.org/Works/ChangeLog.

The key features of this version are:
• Implementation of planned tasks. 
• Optimization, increasing of stability, sustainability and system performance. 
• Improvement and stabilization of the VCA. 
• Formation and stabilization of the user programming API. 
• System-wide expansions. 
• Significant improvements and fixes of individual modules. 
• Formation of the documentation and translations of documentation and interface. 
• Unification of the demo database.

New and updated modules:
• Archive.FSArch - 1.3.1 -> 1.4.1, fixes and enhancements to improve performance; 
• Archive.DBArch - 0.9.0 -> 0.9.2, fixes and some improvements; 
• DB.DBF - 2.0.1 -> 2.0.2, fixes; 
• DB.MySQL - 1.6.1 -> 1.6.2, some improvements; 
• DB.SQLite - 1.6.1 -> 1.6.2, improvements; 
• DB.FireBird - 0.9.1 -> 0.9.5, significant improvements; 

http://wiki.oscada.org/Works/ChangeLog


2

• DB.PostgreSQL - 0.9.0, new module; 
• DAQ.DiamondBoards - 1.2.0 -> 1.2.1, API change adaptation; 
• DAQ.System - 1.7.0 -> 1.7.2, code cleanup and API change adaptation; 
• DAQ.BlockCalc - 1.2.1 -> 1.4.0, improvements and fixes; 
• DAQ.JavaLikeCalc - 1.5.0 -> 1.8.0, significant improvements, bug fixes and optimization; 
• DAQ.LogicLev - 1.0.1 -> 1.1.2, improvements and fixes; 
• DAQ.SNMP - 0.4.0 -> 0.4.1, API change adaptation; 
• DAQ.Siemens - 1.2.1 -> 1.2.3, fixes and API change adaptation; 
• DAQ.ModBus - 1.0.1 -> 1.1.1, improvements and fixes; 
• DAQ.DCON - 0.3.0 -> 0.3.3, improvements and fixes; 
• DAQ.ICP_DAS - 0.5.0 -> 0.7.2, significant improvements and fixes; 
• DAQ.DAQGate - 0.8.0 -> 0.9.1, significant improvements and fixes; 
• DAQ.SoundCard - 0.6.0 -> 0.6.1, API change adaptation; 
• DAQ.OPC_UA - 0.6.0, mew module; 
• Transport.Sockets - 1.4.0 -> 1.4.5, improvements and fixes; 
• Transport.SSL - 0.8.2 -> 0.9.5, improvements and fixes; 
• Transport.Serial - 0.5.0 -> 0.7.1, significant improvements and fixes; 
• Protocol.HTTP - 1.4.1 -> 1.5.0, significant improvements; 
• Protocol.SelfSystem - 0.9.1 -> 0.9.3, fixes and API change adaptation; 
• Protocol.UserProtocol - 0.6.0, new module; 
• Protocol.ModBus - 0.5.0 -> 0.6.1, improvements and fixes; 
• Protocol.OPC_UA - 0.6.0, new module; 
• Special.FLibComplex1 - 1.0.4 -> 1.0.6, improvements and fixes; 
• Special.FLibMath - 0.5.1 -> 0.5.2, API change adaptation; 
• Special.FLibSYS - 0.9.0 -> 0.9.2, improvements and fixes; 
• Special.SystemTests - 1.3.7 -> 1.5.0, remaking and the unification of the tests; 
• UI.QTStarter - 1.5.3 -> 1.6.0, improvements; 
• UI.QTCfg - 1.8.1 -> 1.9.0, significant improvements and fixes; 
• UI.WebCfg - 1.5.3 -> 1.5.4, fixes and API change adaptation; 
• UI.WebCfgD - 0.6.2 -> 0.6.5, fixes; 
• UI.VCAEngine - 0.9.0 -> 1.0.0, significant improvements, bug fixes and optimization; 
• UI.Vision - 0.9.0 -> 1.0.0, significant improvements, bug fixes and optimization; 
• UI.WebVision - 0.7.0 -> 0.9.0, significant improvements and fixes; 
• UI.WebUser - 0.6.0, new module;



3

 1 Implementation of planned tasks
In accordance with the plan of release the following tasks were implemented:

• Implementation  of  the  primitives  "Link"  and  "Function"  of  the  VCA. -  In  a  view  of  the 
unprincipled  to  the industrial  release and unclaimed at  the moment,  this  task has been moved 
beyond the first industrial release. 
• The  stabilization  and  release  of  industrial  branch  of  OpenSCADA. -  The  big  work  on 
stabilization and optimization of the industrial release was done, as detailed in the next section. 
• Implementation of the database ODBC module, PostgresSQL and transport module of the DB. - 
Maxim Lysenko has done the implementation of the "PostgreSQL" DB module. Implementation of 
the database module "ODBC" was considered inappropriate, because the "ODBC" technology is 
actually the interface of SQL-queries that do not address specific SQL-dialects of the real database, 
and therefore can not be right, without regard to the type of database, used in solving OpenSCADA 
basic tasks. The prospect of using "ODBC" is to implement access to the database that have no 
"native" API of direct access to the database, but there is the ODBC driver, or to provide a simple 
interface of SQL-queries in OpenSCADA. The implementation of the transport module of DB was 
moved beyond the first industrial release. 
• Implementation of the new mechanism/module of OpenSCADA system's test. - To perform the 
intra-system tests of OpenSCADA the mechanism of testing module was implemented as the user's 
API functions, which on the one hand retains the possibility of an autonomous call of static tests 
and on the other it provides an opportunity to call tests one by one, manually, as well as from user's 
scripts in any order and with the necessary number of individual tasks.

 2 Optimization, increasing of stability, sustainability and system's 
performance.

During the work on this version, as well as its practical adaptation, it was found and corrected in a total 
of about 200 errors.

In addition to correcting of big number of errors it had been done the work on optimization of the 
various  OpenSCADA's  components.  Especially,  notable optimization  was made in  the Visual  Control 
Area (VCA) and its visualizers.

Lets list the most significant errors, correction of which significantly affected the increasing of stability:
• System-wide: 

• The incorrect  setting of policy for real-time threads is  fixed.  It  has not  been set  the 
PTHREAD_EXPLICIT_SCHED thread flag. 
• The control of dual capture of the resource in the single thread and capture the resource 
by timeout. 
• Mechanism to prevent the multiple startup is corrected for verification of PID of the 
blocked process due to removal by the system the lock-files in the directory /tmp. 
• The packing of classes structure's data using the # pragma pack (push, 1) is disabled 
because of the appearance of implicit buzz bug of one of the threads and blocking the rest  
on the OpenSCADA firmware of LP8x81 PLC. 
• Initialization and updating code of modules is updated to avoid the double initialization 
of shared libraries. 
• The function  of the task creation  is  corrected  to  prevent  crashing when creating  the 
automatically closed tasks during the rapid closing. 
• The hang of function cron() is fixed at reason zero scheduling set. 

• Transports: 
• Serial,  DAQ.DCON,  DAQ.ModBus:  Transport  of  the  serial  interface  is  optimized,  is 
made the typical one and is corrected for several errors. The transport's clients are adapted 
to use the new mechanism. 



4

• Sockets, SSL: The possibility of incomplete recording by the write() function is fixed. 
When writing to the socket, this function writes only the part of the size of its buffer (50k). 
For complete record of large messages the repeat of record is added. 
• Transport.SSL: It  is  finally  fixed  the  waiting  for  data  response  from the  server  by 
waiting the data processing in the BIO_read() functions. 
• Transport.Sockets: The processing of null result of the waiting the tail of messages is 
fixed to avoid hangs on the queries in DAQ.System.HDDTemp. 
• Transport.Serial: CSTOPB flag using for stop bits number set is fixed. 

* Data acquisition:

• ModBus: The loss of resources during the data acquisition if fixed. For this reason it is 
excluded the possibility of assigning the string directly to the object of the resource string. 
• JavaLikeCalc: The using of functions for the parameters of the DAQ controllers from the 
IO functions for first use is fixed. 
• DAQ, BlockCalc, JavaLikeCalc, LogicLev, Siemens: The receiving of the erroneous data 
on the redundancy scheme in the nonredundant tasks and with the absence of redundant 
stations is fixed. 

• Protocol.HTTP, UI.WebCfg,  UI.WebCfgD, UI.WebUser,  UI.Vision: The value of the HTTP-
parameter "Content-Type" is fixed for the "Charset" element. 
• UI.VCAEngine: The crash of the VCA when changing the mutable attributes, that are multiply 
inherited, is fixed.

Optimization and performance improvement:
• SYS.XML: Conversion function of an XML tree into a string is optimized over the time. 
• SYS.Archive:  The  mechanism for  adaptive  generation  of  requests  to  the  archives  of  various 
qualities in the case of a general request is added. It prevents the long processing time in the case 
of requesting the large intervals of time and the availability of lower quality archives. 
• DAQ, DAQ.DAQGate: Optimization of request between redundant stations over the requests' 
size  and  time  is  done.  Only  archive  attributes  of  DAQ parameters  and  attributes,  planned  to 
request, are requested. 
• Archive.FSArch:  The creation  of  information  files  of  the packaged archives  without  storing 
these data in the database is added. This feature allows quick connection of large archives to other 
stations. 
• UI.Vision: In the "ElFigure" primitive for the drawing it is used QPixmap instead of QImage, it 
greatly improved the performance. 
• UI.Vision: To construct the image of the "Diagram" primitive the QImage is used instead of 
QPicture, it greatly improved the performance. 
• TFunction,  DAQ.JavaLikeCalc:  The  enclosed  context  of  the  functions  is  added  in  order  to 
improve the performance of external calls.

Optimization of the memory usage:
• SYS: The system is switched to the traditional "map" instead of "hash_map" for all objects in 
order to reduce memory consumption. 
• UI.VCAEngine: The object of the "Attr" attribute is divorced from the "TCntrNode" object in 
order to reduce memory consumption by up to 25%.



5

 3 Improvement and stabilization of the VCA.
Notable  changes  were  made  in  the  visual  control  area  (VCA),  namely,  in  the  VCA  engine 

(UI.VCAEngine)  modules:  UI.Vision  and  UI.WebVision  visualizers.  These  changes  were  aimed  at 
stabilizing, optimization of memory consumption and improvement of user's properties of VCA.

Improvements of the VCA:
• The full support for vertical scaling of the diagrams is added. 
• The support for alpha channel in color attributes of all primitives is added. 
• UI.VCAEngine: 

• It is included and made safe the inheritance of the description of mutable attributes. 
• The new user's API functions for the sessions are added: wdgAdd(), wdgDel(), link() and 
linkSet(). Addition of these functions allowed to implement the concept of a fully dynamic 
formation of the user interface. 
• Properties of access rights to the widget are implemented by the attributes "owner" and 
"perm" to increase the flexibility of control. 
• The mechanism for automatically creating and running session at startup is added. 

• UI.Vision: 
• In  the  attributes  inspector  the  ability  of  group  setting  of  same  attributes  of  various 
widgets  is  added.  Setting is  done in  the group container  of  the properties  of attributes' 
inspector that appears when you select multiple widgets simultaneously. 
• In the "ElFigure" primitive for the drawing the QPixmap is used instead of QImage, it 
greatly improved the performance. 
• To  construct  the  image  of  the  "Diagram"  primitive  The  QImage  is  used  instead  of 
QPicture, it greatly improved performance. 
• The support of properties of the user interface is added. The control and changing of the 
toolbar icons' size is added. 
• The  ability  to  copy the  values  of  attributes  and  links  through  the  context  menu  of 
attributes' and links' inspectors is added. 
• The search function in the "TextEdit" element is added. 

• UI.WebVision: 
• The support of turning the "Text" primitive is added. 
• The generation of the basic mouse events is added. For processing of some events the 
stack of processing functions is added. 
• For the sender-user the access to its session and control is adapted.



6

 4 Formation and stabilization of API of user's programming.
Extensively  it  has  been made  the  formation  of  new object  API of  the  user's  programming,  which 

provides the integration of user's functions in the objects' tree of OpenSCADA. In addition, a number of  
changes to the existing library of functions of the user's API was made.

In particular the following changes were done:
• SYS: 

• SYS,  Special.FLibSYS:  XMLNodeObj  object  of  the  user's  API  moved  into  the 
OpenSCADA core (tvariant.h and tvariant.cpp files). 
• User's system API of OpenSCADA based on the TCntrNodeObj object is expanded to 
control the user's access rights. 
• TAreaObj object is renamed to TArrayObj. 
• Properties  of  objects,  functions'  calls  and  exceptions'  processing  of  user's  API  are 
unified. 
• SYS.TVarObj:  The  propList()  function  is  added  to  provide  an  ability  to  scan  the 
attributes. 

• DAQ.JavaLikeCalc: 
• Functions of the user's API: insert(), replace(), toReal(), toInt(), parse(), parsePath() and 
path2sep() are added in the object of the string type value. 
• The isEVal() function is added to basic types in order to detect the EVAL-values. 

• Special.FLibComplex1: PID function is expanded with new parameters: Kd, Tzd and followSp. 
The Tf parameter is removed. 
• Object API of the user's programming: 

• SYS:  User's  API  functions:  system(),  message(),  XMLNode(),  cntrReq(),  time(), 
localtime(),  strftime(),  strptime(),  cron(),  messDebug(),  messInfo(),  messNote(), 
messWarning(), messErr(), messCrit(), messAlert(), messEmerg() и strFromCharCode() are 
added to the root object of the OpenSCADA core. 
• DB: SQLReq() user's API function is added to the database object. 
• Transport: messIO() user's API function is added to the object of the outgoing transport. 
• UI.VCAEngine: 

• User's API functions: user(), alrmSndPlay() and alrmQuittance() are added to the 
session's object of the project. 
• To the "Widget"  object the functions  of user's  API were added:  ownerSess(), 
ownerPage(),  ownerWdg(),  attrPresent(),  attr(),  attrSet(),  wdgAdd(),  wdgDel(), 
link() and linkSet(). 
• The special attribute "this" is added into all VCA's scripts to access the widget's 
object and further calling of its functions of user's API. 

• Archives: messGet() user's API function is added to the object of subsystem "Archives". 
• DAQ.Value: The functions of user's API get() and set() of the attribute are added.



7

 5 System-wide expansions.
To the system-wide API of OpenSCADA system there have been made the significant changes and 

expansions in order to improve the functionality and overall stabilization:
• SYS: 

• The mechanism to prevent re-run is added to the scripts: demo-start and user-start. 
• The global functions to create (register) taskCreate () and to close taskDestroy () of the 
treads are added. All components of OpenSCADA use new API. 
• The debian/* files for support the building of Debian packages are added. 
• The strParse() function is added for the expansion of the strSepParse() function in order 
to support of multi-character separators and for the integration of single-character ones. 
• The infrastructure of the debugging counters is added. 
• The  ability  to  assign  processors  to  the  threads  of  OpenSCADA  on  multi-processor 
systems and multi-core processors is added. 
• The task manager  is added. The id field of the thread's  process is added to the task 
manager. 
• To implement specific functions the wrapper on the tasks of OpenSCADA is added. The 
"TError" exceptions' processing is added for the tasks inside the wrapper. 
• The core's code of the OpenSCADA is placed in the "OSCADA" scope. Version of the 
OpenSCADA's сore library is increased to 1:0:0. 
• The rules of access to all elements of the control interface are unified. 
• The check for a version 2.0 of the libtool library is added. It is enabled the building of 
only shared libraries for modules. 
• The ID of the module is placed in the class of the constructor to simplify initialization of 
translating the text messages of the modules. 
• For all translations the parameters "-C --no-location --no-wrap -k_" of the xgettext utility 
are used. It is used for cleaning the garbage from the translation files. 
• API versions of the all modular sub-systems are set to 5. 

• SYS.Function,  DAQ.BlockCalc,  DAQ.LogicLev,  UI.VCAEngine:  The mechanism for changes' 
monitoring in the parameters of "DAQ" subsystem's controller is added. 
• DB: 

• The automatic opening of the available tables on request to them is added. 
• The  transaction  control  is  added  to  the  function  sqlReq(),  as  well  as  the  function 
transCloseCheck() is added. 

• TFunction, DAQ.JavaLikeCalc: The enclosed сontext of functions is added in order to improve 
the performance of external calls. 
• DAQ: The error code is added to the state of the controller, which allows us to identify state and 
display it. 
• Protocol, Transport, DAQ.ModBus, Protocol.UserProtocol: The function itemListIn() is added 
to select elements of a protocol. The module's API of the subsystem is changed to 3. The selection 
of protocol's elements via the function TProtocol::itemListIn() is added.



8

 6 Significant improvements and fixes of the individual modules.
While working on this industrial release the significant changes, improvements and stabilization were 

made with the individual modules of OpenSCADA:
• DB.MySQL: 

• The support for unbounded values of "Real" and "Integer" data types is added. 
• The conversion of EVAL for the real type is added. 

• DB.SQLite: The transaction mechanism is improved to support user's SQL-queries and closing 
the old transactions. 
• DB.FireBird: The support for multilingual text variables is added. The support of transactions is 
unified. 
• DAQ: 

• DAQGate: The support of ability to request the individual attributes is added. It is used 
to request the archived and often requested attributes. All other attributes are requested with 
the period of synchronization by a full request. It is used to reduce the workload and time in 
exchange of DAQGate with a remote OpenSCADA station. 
• ICP_DAS: The status of the DIP-switch for LP-8781 PLC is added. The functions to 
send the messages via the serial interface are moved into the general serReq() function and 
all requests use it. 
• ModBus: The suffixes "i2, i4, f, b0" are added to the registers (R and RI) for flexible 
access through a variety of data types. 
• JavaLikeCalc: 

• The support of the review loop "for( <i> in <obj> ) <code>;" to scan the object's  
properties is added. 
• Properties of objects, functions' calls and exceptions' processing of user's API are 
unified. 

• Transport: 
• Serial: 

• The ability to select the type of the thread's control is added. It is supported the 
hardware (CRTSCTS) and software (IXON IXOFF) thread's control. 
• The support of the modem mode for all input and output transports is added. 

• SSL: 
• The support of KeepAlive limits is added. The support of reconnection after the 
connection loss for prevention the loss of messages is added. 
• The getting of the sender's address is added. 

• SSL,  Sockets:  In  the  outgoing  transport  it  is  added  the  timings  for  the  individual 
connection time and time of the subsequent responses control. 
• Protocol.HTTP: 

• The function of the outgoing protocol is added. 
• The support of automatic login is added. 

• Archive.FSArch: The creation of information files of packaged archives is added without storing 
these data in the database. This feature allows quick connection of large archives to other stations. 
• UI.QTCfg: 

• The adjustment of rows for tables after adding the new rows is added. The support for 
copying the contents of the table to the clipboard is added. 
• The search function in the "TextEdit" element is added. 
• The ability to copy the list of selected nodes is added.



9

 7 Formation of the documentation, translation of documentation 
and interface.

Since this  release is  positioned as an industrial  release with a prolonged period of support,  it  was 
finished writing the documentation in Russian and translation into English of all the main documentation.  
In addition, the translation of the user's interface into English, Russian, Ukrainian and German languages 
is completed:

• The README translation into Ukrainian is added. 
• The translation of the DAQ document and the summarizing document into English is done. 
• The document "Quick Start" is added. 
• The translation of the document "Quick Start" into English language is added. 
• General document "OpenSCADA" in English is updated to include the following parts: "Quick 
Start" and DAQ.OPC_UA. 
• The interface translation of the system core to Russian,  Ukrainian and German languages is 
updated. 
• For all translations the parameters "-C - no-location - no-wrap-k_" of the xgettext utility are 
used. It is used for cleaning the garbage from the translation files.

 8 Unification of the demonstration database.
During the preparation of the industrial release, considerable attention was paid to improving the demo 

database as a vivid demonstration of the OpenSCADA system:
• Significant upgrade to support new features and include new improvements from the automation 
control system of ball mills. 
• The support of user's calling of the demonstration database in the full mode on the record is 
added. 
• The scaling of existing elements in the case of absence of rows and/or columns for the overview 
frame and the result graphics is added. 
• It is updated to include new models of machines of technological processes and for adapt all the 
other models. 
• It is updated for: 

• Addition  of  the  signaling  objects  of  the  compressors:  KM201,  KM301,  KM202 and 
KM302. 
• Support of the manual input of variables from the control panel. 
• Translation's update. 
• Fixing of the several bugs. 

• Script of the main page of the project is rewritten to use new functions of the user's API. 
• The new mechanism to access user's  interface elements  is  used.  The real read access for a 
simple user ("user") is provided.

 9 Solutions, based on OpenSCADA
Actually the whole range of automation solutions is built on the basis of OpenSCADA project, which 

clearly demonstrates the capabilities and is the signal of readiness of the system for the wide industrial 
application.

In general, on the basis of OpenSCADA the authors of the project solved the following tasks: the full 
dynamic  simulation  (modeling)  of  technological  processes  (TP),  process  control  at  the  level  of  the 
programmable logic controller (PLC) and formation of HMI of the TP.

Modelling of the TP is presented by the solutions: "Library of models of technological devices", "The 
dynamic model of real-time of the Anastasievskaja GLKS" and "The dynamic model of the steam boiler 
number 9 DMKD" . Besides the solution "The dynamic model of real-time of the Anastasievskaja GLKS" 



10

was  the  basis  for  the  demonstration  project  database  and  it  is  distributed  with  all  distributions  of 
OpenSCADA.

The scope of process control at the level of the programmable logic controller (PLC) is presented by the 
solution "OpenSCADA into programmable logic controller (PLC)" and "Runtime of the PLC LP-8x81 of 
the ICP DAS company based on the OpenSCADA".

The scope of the formation  of the TP HMI is  presented by the  solutions:  "Library of the graphic  
elements of the user's interfaces" and " ACS TP of the ball mills "ШБМ 287/410" of the boiler "БКЗ 160–
100 ПТ" ".

One should also note the presence of a number of solutions that are not included in the list above, and 
made by the developers of the system for the third parties or directly by the users.

Conclusion
OpenSCADA system is ready for practical use in harsh industrial conditions and to perform a wide 

range of automatic process control tasks.

With the purpose to provide the quality service based on the OpenSCADA solutions, as well as for 
development in the direction of support the specialized equipment, protocols and interfaces, developers are 
actively working on the formation the policy of providing the services on the commercial basis. The list of 
commercial services will include: technical support, consultations and targeted development of extensions, 
integration and implementation of solutions, and development of customized solutions and products, based 
on OpenSCADA.

The 0.7.0 version provides the OpenSCADA solutions only for the Linux x86 and x86_64 platforms. 
To implement the support of other hardware and software platforms, planned by the project, the work will  
continue. So, for version 0.8.0 it is planned to expand the support of hardware platforms, at least of the 
ARM platform, as the representative of RISC architecture.

In the appearance of the first industrial  version of OpenSCADA actively participated the following 
people:

• Roman Savochenko  : The main works on the projecting, development, documentation's writing 
and testing. 
• Maxim Lysenko  : Development of the "ElFigure" VCA primitive, creation of the DB module 
"PostgreSQL" and translation of the main part of documentation into English. 
• Yashina Ksenia  : Development of the "ElFigure" VCA primitive. 
• Попкова Ирина:  Translation  of  the system interface  of  OpenSCADA and its  modules  into 
German language. 
• Almaz Kharimov: Development of the DCON Protocol module and active testing of the system. 
• Popkov Aleksey  : Active testing and participation. 
• Many other OpenSCADA users, via extensive testing.

Links
Testing protocol of production release: http://wiki.oscada.org/Works/Tests/release070

http://wiki.oscada.org/Works/Tests/release070
http://wiki.oscada.org/PopkovAleksey?v=141x
http://wiki.oscada.org/YashinaKsenia?v=139q
http://wiki.oscada.org/HomePageEn/MaximLysenko?v=t6q
http://wiki.oscada.org/RomanSavochenko?v=1bw8

	OpenSCADA 0.7.0
	Introduction
	 1 Implementation of planned tasks
	 2 Optimization, increasing of stability, sustainability and system's performance.
	 3 Improvement and stabilization of the VCA.
	 4 Formation and stabilization of API of user's programming.
	 5 System-wide expansions.
	 6 Significant improvements and fixes of the individual modules.
	 7 Formation of the documentation, translation of documentation and interface.
	 8 Unification of the demonstration database.
	 9 Solutions, based on OpenSCADA
	Conclusion
	Links


