
The module of subsystem “Data acquisition”
<JavaLikeCalc>

Module: JavaLikeCalc
Name: Calculator based on Java-like language.
Type: DAQ
Source: daq_JavaLikeCalc.so
Version: 1.4.0
Author: Roman Savochenko
Translated: Maxim Lysenko

Description:
Provides based on java like language calculator and engine of libraries. The user can
create and modify functions and libraries.

License: GPL

Contents table
The module of subsystem “Data acquisition” <JavaLikeCalc>..1

Introduction..2
 1. Java-like language ..4

 1.1. Elements of language ..4
 1.2. Operations of language ...4
 1.3. Embedded functions of language ..5
 1.4. Operators of the language ...6
 1.5. Examples of programs on the language ...6

 2. Controller and its configuration ...8
 3. The parameter of the controller and its configuration ...9
 4. Libraries of functions of module ..10
 5. User functions of the module ..10

2

Introduction
The module of controller JavaLikeCalc provides a mechanism for creating of functions and libraries on

Java-like language. Description of functions on Java-like language is reduced to the binding parameters of
the function with algorithm. In addition, the module has the functions of the direct computation by
creation of the computing controllers.

Direct computations are provided by the creation of controller and linking it with the function of this
module. For linked function it is created the frame of values, with which the periodically calculating is
carried out.

The module implements the functions of the horizontal reservation, namely, working in conjunction
with the remote station of the same level. In addition to the synchronization of the archives of values and
archives of attributes of parameters the module implements synchronization of computational function, in
order to shockless catch of the algorithms.

Parameters of functions can be freely created, deleted or modified. The current version of the module
supports up to 255 parameters of the function in the sum with the internal variables. View of the editor of
functions is shown in Figure 1.

Fig.1. View of the editor of functions.

3

After any program changing or configuration of parameters recompiling of the programs with
forestalling of linked with function objects of values of TValCfg is performed. Language compiler is built
using well-known generator grammar «Bison», which is compatible with the not less well-known tool
Yacc.

The language uses the implicit definition of local variables, which is to define a new variable in the
case of assigning a value to it. This type of local variable is set according to the type of the assigning
value. For example, the expression <Qr=Q0*Pi+0.01;> will define Qr variable with the type of variable
Q0.

In working with various types of data language uses the mechanism of casting the types in the places
where such casting is appropriate.

To comment the sections of code in the language it is provided «//» and «/ * ... * /» characters.
Everything that comes after "//" up to the end of the line and between «/ * ... * /», is ignored by the
compiler.

During the code generation language compiler produces an optimization of constants and casting the
types of the constants to the required type. Optimizing of the constants means the implementation of
computing of the constants in the process of building of the code under the two constants and paste the
result in the code. For example, the expression <y=pi*10;> reduces to a simple assignment <y=31.4159;>.
Casting the types of constants to the required type means formation of the constant in the code which
excludes the cast in the execution process. For example, the expression <y=x*10>, in the case of a real
type of the variable x, is transformed into <y=x*10.0>.

The language supports calls of the external and internal functions. Name of any function in general is
perceived as a character, test for ownership of which by a particular category is done in the following
order:

• keywords;
• constants;
• built-in functions;
• external functions;
• already registered characters of variables;
• new attributes of the system parameters;
• new function parameters;
• new automatic variable.

Call of the external function, attribute of system parameters is written as an address to the object of
dynamic tree of the object model of the system OpenSCADA in the form of:
<DAQ.JavaLikeCalc.lib_techApp.klapNotLin>.

To provide the possibility of writing custom procedures for the administration of the various
components of OpenSCADA module provides the implementation of API pre-compilation of custom
procedures of individual components of OpenSCADA on the implementation of Java-like language. These
components are already: Templates of the parameters of subsystem “Data acquisition” and Visual control
area (VCA).

4

 1. Java-like language

 1.1. Elements of language

Keywords: if, else, while, for, break, continue, return, using, true, false.

Constants:
• decimal: numerals 0–9 (12, 111, 678);
• octal: numerals 0–7 (012, 011, 076);
• hexadecimal: numerals 0–9, letters a-f or A-F (0x12, 0XAB);
• real: 345.23, 2.1e5, 3.4E-5, 3e6;
• boolean: true, false;
• string: «hello».

Types of variables:
• integer: -231...231;
• real: 3.4 * 10308;
• boolean: false, true;
• string: длина 256 символов и без перехода на другую строку.

Built-in constants: pi = 3.14159265, e = 2.71828182, EVAL_BOOL(2), EVAL_INT(-2147483647),
EVAL_REAL(-3.3E308), EVAL_STR("<EVAL>")

Attributes of the parameters of system OpenSCADA (starting from subsystem DAQ, as follows <Type
of DAQ module>.< Controller>.<Parameter>.<Attribute>).

The functions of the object model of the system OpenSCADA.

 1.2. Operations of language

Operations supported by the language presented in the table below. The priority of operations is
reduced from top to bottom. Operations with the same priority is composed of one color group.

Symbol Описание

() Call of the function.

{} Program blocks.

++ Increment (post and pre).

-- Decrement (post and pre).

- Unary minus.

! Logical negation.

~ Bitwise negation.

* Multiplication.

/ Division.

% The remainder of integer division.

+ Addition

- Subtraction

<< Bitwise shift left

>> Bitwise shift right

> Greater

>= Greater than or equal to

5

Symbol Описание

< Less

<= Less than or equal to

== Equals

!= Unequal

| Bitwise «OR»

& Bitwise «AND»

^ Bitwise «Exclusive OR»

&& Boolean «AND»

|| Boolean «OR»

?: Conditional operation (i=(i<0)?
0:i;)

= Assignment.

+= Assignment with addition.

-= Assignment with subtraction.

*= Assignment with multiplication.

/= Assignment with division.

 1.3. Embedded functions of language

To ensure a high speed in mathematical calculations module provides embedded mathematical
functions that are called at the level of commands of virtual machine. Predefined mathematical functions:

• sin(x) — sine x;
• cos(x) — cosine x;
• tan(x) — tangent x;
• sinh(x) — hyperbolic sine of x;
• cosh(x) — hyperbolic cosine of x;
• tanh(x) — hyperbolic tangent of x;
• asin(x) — arcsine of x;
• acos(x) — arc cosine of x;
• atan(x) — arctangent of x;
• rand(x) — random number from 0 to x;
• lg(x) — decimal logarithm of x;
• ln(x) — natural logarithm of x;
• exp(x) — exponent of x;
• pow(x,x1) — erection of x to the power x1;
• max(x,x1) — maximum value of x and x1;
• min(x,x1) — minimum value of x and x1;
• sqrt(x) — the square root of x;
• abs(x) — absolute value of x;
• sign(x) — sign of x;
• ceil(x) — rounding the number x to a greater integer;
• floor(x) — rounding the number x to a smaller integer.

6

 1.4. Operators of the language

The total list of operators of the language:
• if — operator of the condition “If”;
• else — operator of the condition “ELSE”;
• while — description of the loop while;
• for — description of the loop for;
• break — interrupt of the execution of the loop;
• continue — continue the execution of the loop from the beginning;
• using — allows to establish scope of functions of often used library (using Special.FLibSYS;)
for future reference only by means of the function name;
• return — interruption of the function and return of the result, the result is copied to the attribute
with the flag return (return 123;).

 1.4.1. Conditional operators

The language of module supports two types of conditions. First – this is the operation of condition for
use within the expression, the second – a global, based on the conditional operators.

Conditions inside the expression is based on the operations of «?» And «:». As an example we'll write
the following practical expression <st_open=(pos>=100)?true:false;>, which reads as «If the variable
<pos> greater than or equal to 100, the variable st_open is set to true, otherwise – to false.

The global condition is based on the conditional operators «if» and «else». An example is the same
expression, but written by other means <if(pos>100) st_open=true; else st_open=false;>. As shown, the
expression is written in a different way, but is read in the same way.

 1.4.2. Loops

Two types of loops are supported : while and for. The syntax of the loops corresponds to programming
languages: C++, Java, and JavaScript.

Loop while generally written as follows: while(<condition>) <body of the loop>; Loop for is written
as follows: for(<pre-initialization>;<condition>;<post-calculation>) <body of the loop>;

Where:
<condition> — expression, determining the condition;
<body of the loop> — the body of the loop of multiple execution;
<pre-initialization> — expression of pre-initialization of variable of the loop;
<post-calculation> — expression of modification of parameters of the loop after the next iteration.

 1.4.3. Special characters of string variables

The language supports the following special characters of string variables:
'\n' — line feed;
'\t' — tabulation symbol;
'\b' — culling;
'\f' — page feed;
'\r' — carriage return;
'\\' — the character itself '\'.

 1.5. Examples of programs on the language

Here are some examples of programs on Java-like language:

//Model of the course of the executive machinery of ball valve
if(!(st_close && !com) && !(st_open && com))
{

7

tmp_up=(pos>0&&pos<100)?0:(tmp_up>0&&lst_com==com)?tmp_up-1./frq:t_up;
pos+=(tmp_up>0)?0:(100.*(com?1.:-1.))/(t_full*frq);
pos=(pos>100)?100:(pos<0)?0:pos;
st_open=(pos>=100)?true:false;
st_close=(pos<=0)?true:false; lst_com=com;

}
//Valve model
Qr=Q0+Q0*Kpr*(Pi-1)+0.01;
Sr=(S_kl1*l_kl1+S_kl2*l_kl2)/100.;
Ftmp=(Pi>2.*Po)?Pi*pow(Q0*0.75/Ti,0.5):

(Po>2.*Pi)?Po*pow(Q0*0.75/To,0.5):
pow(abs(Q0*(pow(Pi,2)-pow(Po,2))/Ti),0.5);

Fi-=(Fi-7260.*Sr*sign(Pi-Po)*Ftmp)/(0.01*lo*frq);
Po+=0.27*(Fi-Fo)/(So*lo*Q0*frq);
Po=(Po<0)?0:(Po>100)?100:Po;
To+=(abs(Fi)*(Ti*pow(Po/Pi,0.02)-To)+

(Fwind+1)*(Twind-To)/Riz)/(Ct*So*lo*Qr*frq);

8

 2. Controller and its configuration
The controller of the module connects with the functions of libraries, built with his help, to provide

immediate calculations. In order to provide calculated data in the system OpenSCADA parameters can be
created in the controller. Example of the configuration tab of the controller of the given type depicted in
Figure 2.

Fig.2. Configuration tab of the controller.

From this tab you can set:
• The state of the controller, as follows: Status, «Enabled», «Running» and the name of the
database containing the configuration.
• Id, name and description of the controller.
• The state, in which the controller must be translated at boot: «Enabled» and «Running».
• Horizontal mode of redundancy and performance preference of the controller.
• Name of table to store the settings.
• Address of the computational function.
• Period, priority and number of iterations in one cycle of computing task.

9

• Automatic synchronization period of blocks with the database.
• Save/load controller to/from the database.

Tab “Calculations” of the controller (Fig. 3) contains the parameters and the text of the program,
directly performed by the controller. Also for monitoring of execution the time of calculating of the
program is shown.

Fig.3. Tab “Calculations” of the controller.

 3. The parameter of the controller and its configuration
Parameter of the controller of the module executes the function of providing the access to the results of

computation of the controller to the system OpenSCADA by attributes if the parameters. Configuration tab
contains only one specific field of the, set the controller only contains a field of listing the parameters of
calculated function, which should be reflected.

10

 4. Libraries of functions of module
The module provides a mechanism to create libraries of user functions on Java-like language. Example

of the configuration tab of the library is depicted in Figure 4. The tab contains the basic fields: status,
identifier, name and description, and also address of the table, in which the library is kept. In the
“Functions” tab of the library besides the list of functions the form of copying functions is contained.

Fig.4. Tab of the configuration of the library.

 5. User functions of the module
Function, as well as the library, contains the basic configuration tab, tab of the formation of the

program and the parameters of function (Fig. 1), as well as the performance tab of the created function.

	The module of subsystem “Data acquisition” <JavaLikeCalc>
	Introduction
	 1. Java-like language
	 1.1. Elements of language
	 1.2. Operations of language
	 1.3. Embedded functions of language
	 1.4. Operators of the language
	 1.5. Examples of programs on the language

	 2. Controller and its configuration
	 3. The parameter of the controller and its configuration
	 4. Libraries of functions of module
	 5. User functions of the module

